TY - JOUR T1 - Drag reduction of ground vehicle by decreasing flow separation with a passive flow control part TT - Bir pasif akış kontrol parçası ile akış ayrılmasını azaltarak kara taşıtının sürükleme kuvvetinin azaltması AU - Bayındırlı, Cihan AU - Çelik, Mehmet PY - 2024 DA - December Y2 - 2024 DO - 10.70669/ijedt.1515677 JF - Uluslararası Mühendislik Tasarım ve Teknoloji Dergisi JO - IJEDT PB - Burdur Mehmet Akif Ersoy University WT - DergiPark SN - 2667-5374 SP - 96 EP - 102 VL - 6 IS - 2 LA - en AB - This study focus on reducing the aerodynamic drag force on a ground vehicle model with a spolier model. The spoiler model was designed to delay the flow separation and passive flow control. A 1/15 scaled vehicle model was used in wind tunnel tests. That vehicle model uses in passenger transportation sector. The spoiler model was designed in the SolidWorks® and produced bu using a 3-D printer. The spoiler was mounted on front roof area of vehicle at 10% and 5% (L/H) rates.. The wind tunnel tests were carried out at four different free-flow velocity speeds. The drag coefficient was reduced by 3.93% in model 1 and 2.86% in model 2. Flow separation was delayed and decreased by this flow control part application on vehicle. These drag reductions can decrease the fuel consumption of vehicle models by about 2% at high speeds. KW - CD KW - Drag KW - CAD KW - Wind tunnel tests KW - Aerodynamic study KW - Passive flow control method N2 - Bu çalışma, bir zemin aracı modelinde spoiler modeli kullanarak aerodinamik sürükleme kuvvetini azaltmaya odaklanmaktadır. Spoiler modeli, akış ayrılmasını geciktirmek ve pasif akış kontrolü sağlamak amacıyla tasarlanmıştır. Rüzgar tüneli testlerinde 1/15 ölçekli bir araç modeli kullanılmıştır. Bu araç modeli, yolcu taşımacılığı sektöründe kullanılmaktadır. Spoiler modeli, SolidWorks® programında tasarlanmış ve 3D yazıcı kullanılarak üretilmiştir. Spoiler, aracın ön tavan bölgesine %10 ve %5 (L/H) oranlarında monte edilmiştir. Rüzgar tüneli testleri, dört farklı serbest akış hızıyla gerçekleştirilmiştir. Sürükleme katsayısı model 1'de %3,93 ve model 2'de %2,86 oranında azaltılmıştır. Bu akış kontrol parçası uygulaması, araç üzerindeki akış ayrılmasını geciktirmiş ve azaltmıştır. Bu sürükleme azaltmaları, yüksek hızlarda araç modellerinin yakıt tüketimini yaklaşık %2 oranında azaltabilir. CR - Aftab, S. M. A., Rafie, A. S. M., Razak, N. A., & Ahmad, K. A. (2016). Turbulence model selection for low Reynolds number flows. PLoS ONE, 11(4), e0153755. https://doi.org/10.1371/journal.pone.0153755 CR - Bayindirli, C., Akansu, Y. E., & Celik, M. (2020). Experimental and numerical studies on improvement of drag force of a bus model using different spoiler models. International Journal of Heavy Vehicle Systems, 27(6), 743-776. CR - Bayindirli, C., & Celik, M. (2018). Bir minübüs modeli etrafındaki akış yapısının CFD yöntemi ile incelenmesi. In IV International Academic Research Congress (pp. 30 October-3 November). Alanya, Türkiye. CR - Bayindirli, C., & Celik, M. (2022). Experimental optimization of aerodynamic drag coefficient of a minibus model with non-smooth surface plate application. Journal of Engineering Studies and Research, 28(4), 23-29. https://doi.org/10.29081/jesr.v28i3.004 CR - Bayindirli, C., & Celik, M. (2023, September 15-17). The experimentally improving of drag coefficient of a minibus model with wing-shaped spoiler model. In 5th International Turkic World Congress on Science and Engineering. Bişkek, Kırgızistan. CR - Bhatnagar, U. R. (2014). Formula 1 race car performance improvement by optimization of the aerodynamic relationship between the front and rear wings (Master’s thesis). The Pennsylvania State University. CR - Çengel, Y. A., & Cimbala, J. M. (2008). Fundamentals of fluid mechanics and applications. Güven Bilimsel. CR - Çiftçi, H., Bayındırlı, C., & Örs, İ. (2023). Experimental investigation of spoiler application in an SUV-type vehicle. International Journal of Energy Applications and Technologies, 10(1), 1-5. CR - Kajiwara, S. (2017). Passive variable rear-wing aerodynamics of an open-wheel racing car. Automotive and Engine Technology, 2, 107–117. https://doi.org/10.1007/s41104-017-0021-9 CR - Kishore, K. S., Pendyala, S., & Dwivedi, Y. D. (2022). A review on base drag reduction methods. Graduate Research in Engineering and Technology (GRET), 1(5), 52-60. https://doi.org/10.47893/GRET.2022.1073 CR - Langtry, R. B., & Menter, F. R. (2009). Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA Journal, 47(12). CR - McBeath, S. (2006). Competition car aerodynamics: A practical handbook. Haynes Publishing. CR - Palanivendhan, M., Chandradass, J., Saravanan, C., Philip, J., & Sharan, R. (2021). Reduction in aerodynamic drag acting on a commercial vehicle by using a dimpled surface. Materials Today: Proceedings, 45, 7072-7078. CR - Smith, A. (1974, August 12-14). High-lift aerodynamics 37th Wright Brothers Lecture. In Proceedings of the 6th Aircraft Design, Flight Test and Operations Meeting (Vol. 12). Los Angeles, CA, USA. https://doi.org/10.2514/6.1974-939 CR - Wood, R. M., & Bauer, S. X. S. (2003). Simple and low-cost aerodynamic drag reduction devices for tractor-trailer trucks. SAE Technical Paper, 01(3377), 1-18. CR - Wordley, S., McArthur, D., Phersson, L., Tudball Smith, D., & Burton, D. (2014, December 8-11). Development of a drag reduction system (DRS) for multi-element race car wings. In Proceedings of the 19th Australasian Fluid Mechanics Conference, AFMC 2014. Melbourne, Australia. CR - Yadav, R., Islam, A., & Chaturvedi, R. (2021). Efficient reduction of the consumption of fuel in road vehicles using aerodynamic behavior in CDF analysis. Materials Today: Proceedings, 45, 2773-2776. CR - Yanqing, W., Ding, W., Yuju, W., Yuan, M., Lei, C., & Jiadao, W. (2023). Aerodynamic drag reduction on speed skating helmet by surface structures. Applied Sciences, 13(130), Article 130. https://doi.org/10.3390/app13010130 UR - https://doi.org/10.70669/ijedt.1515677 L1 - https://dergipark.org.tr/en/download/article-file/4068368 ER -