TY - JOUR T1 - Sustainable Particleboards from Invasive Cogon Grass using Epoxy Resin: A Greener Alternative to Wood-Based Panels AU - Lubis, Mirna AU - Fathanah, Umi AU - Atina, Nayla AU - Aina, Zahratul PY - 2025 DA - September Y2 - 2025 DO - 10.35378/gujs.1517336 JF - Gazi University Journal of Science PB - Gazi University WT - DergiPark SN - 2147-1762 SP - 1143 EP - 1157 VL - 38 IS - 3 LA - en AB - This study explores cogon grass (Imperata cylindrica), an invasive species, as a sustainable raw material for particleboard production. Epoxy resin was used as a binder, with methanol added to enhance processing and mechanical performance. The effects of particle size (<60 mesh and >60 mesh), five methanol concentrations (1.5%–3.5%), and binder-to-particle ratios (1.4:1 to 2.2:1) were evaluated. Boards were pressed at 25°C for 15 minutes. Physical and mechanical properties were analyzed, including density, moisture content, thickness swelling, tensile strength, yield strength, and modulus of elasticity derived from tensile testing. Results showed densities ranging from 0.568 to 0.942 g/cm3, moisture content below 6.6%, and zero thickness swelling after 24-hour immersion. The best mechanical results reached 11.96 MPa for tensile strength and 125.82 MPa for yield strength, with a maximum modulus of elasticity of 190.09 MPa. While MOE values were derived from tensile testing and not flexural analysis as required by SNI 03-2105-2006, results indicate cogon grass particleboards are promising for indoor use. KW - Adhesive/particle ratio KW - Alang-alang KW - Cogon Grass KW - Epoxy Resin KW - Particleboard CR - [1] Lubis, M., Wijaya, S., Ginting, M.H.S., and Harahap, M.B., “Effect of cogon grass powder (Imperata cylindrica L. Beauv) composition and particle size on physical and mechanical properties of unsaturated polyester resin particle board products”, AIP Conference Proceedings, 2267: 020055, (2020). DOI: https://doi.org/10.1063/5.0016031 CR - [2] Internet: Statistics of Forestry Production 2021, In BPS-Statistics Indonesia, https://www.bps.go.id/id/publication/2022/07/29/e6e4600abae56ef5d4507463/statistik-produksi-kehutanan-2021.html, (2022). CR - [3] Yani, A., Indrasari, N., Wicaksono, B.R., Rudiana, E., Hakim, E.H.N., Jannah, M., Zet, L., Purwanti, F.I., Putri, F.A., Novantia, Rizqi, A., Calista, P., and Palupi, H., Statistics of Forestry Production 2022, BPS-Statistics Indonesia, Jakarta, (2023). CR - [4] Jumaidin, R., Khiruddin, M.A.K., Saidi, Z.A.S., Salit, M.S., and Ilyas, R.A., “Effect of cogon grass on the thermal, mechanical, and biodegradation properties of thermoplastic cassava starch biocomposite”, International Journal of Biological Macromolecules, 146: 746–755, (2020). DOI: https://doi.org/10.1016/j.ijbiomac.2019.11.011 CR - [5] Ramsey, C.L., Jose, S., Miller, D.L., Cox, J., Portier, K.M., Shilling, D.G., and Merritt, S., “Cogongrass [Imperata cylindrica (L.) Beauv.] response to herbicides and disking on a cutover site and in a mid-rotation pine plantation in southern USA”, Forest Ecology and Management, 179(1–3): 195–207, (2003). DOI: https://doi.org/10.1016/S0378-1127(02)00515-7 CR - [6] Jung, Y.K., Shin, D., “Imperata cylindrica: A review of phytochemistry, pharmacology, and industrial applications”, Molecules, 26: 1454, (2021). DOI: https://doi.org/10.3390/molecules26051454 CR - [7] Kow, K.W., Yusoff, R., Aziz, A.R.A., and Abdullah, E.C., “Characterisation of bio-silica synthesized from cogon grass (Imperata cylindrica)”, Powder Technology, 254: 206–213, (2014). DOI: https://doi.org/10.1016/j.powtec.2014.01.018 CR - [8] Mensah, P., Govina, J., Asante, J.O.O., Seidu, H., Junior, F.R., Paula, E.A.D.O., Pedrosa, T.D., and Melo, R.R.D., “Durability and resistance of eco-friendly particleboards produced from agroforestry residues”, Revista Materia, 28(2), (2023). DOI: https://doi.org/10.1590/1517-7076-rmat-2023-0027 CR - [9] Farooq, A., Patoary, M.K., Zhang, M., Mussana, H., Li, M., Naeem, M.A., Mushtaq, M., Farooq, A., and Liu, L., “Cellulose from sources to nanocellulose and an overview of synthesis and properties of nanocellulose/zinc oxide nanocomposite materials”, International Journal of Biological Macromolecules, 154: 1050–1073, (2020). DOI: https://doi.org/10.1016/j.ijbiomac.2020.03.163 CR - [10] Kassim, A.S.M., Aripin, A.M., Ishak, N., Hairom, N.H.H., Fauzi, N.A., Razali, N.F., and Zainulabidin, M. H., “Potential of cogon grass (Imperata cylindrica) as an alternative fibre in paper-based industry”, ARPN Journal of Engineering and Applied Sciences, 11(4): 2681–2686, (2016). CR - [11] Yusof, Y.M., Othman, S. A., “A review on the use of natural fibres of cogon grass mixed with concrete for radiation shielding materials”, Journal of Nuclear and Related Technologies, 18(2): 23–31, (2021). CR - [12] MacDonald, G.E., “Cogongrass (Imperata cylindrica)–Biology, Ecology, and Management”, Critical Reviews in Plant Sciences, 23(5): 367–380, (2010). DOI: https://doi.org/10.1080/07352680490505114 CR - [13] Xuan, T.D., Toyama, T., Fukuta, M., Khanh, T.D., and Tawata, S., “Chemical interaction in the invasiveness of cogongrass (Imperata cylindrica (L.) Beauv.)”, Journal of Agricultural and Food Chemistry, 57(20): 9448–9453, (2009). DOI: https://doi.org/10.1021/jf902310j CR - [14] Minogue, P.J., Brodbeck, B.V., and Miller, J.H., “Biology and control of cogongrass (Imperata cylindrica) in Southern Forests”, EDIS, 2018(2): 1–6, (2018). DOI: https://doi.org/10.32473/edis-fr411-2018 CR - [15] Kassim, A.S.M., Aripin, A.M., Ishak, N., and Zainulabidin, M.H., “Cogon grass as an alternative fibre for pulp and paper-based industry: On chemical and surface morphological properties”, Applied Mechanics and Materials, 773–774(2015): 1242–1245, (2015). DOI: https://doi.org/10.4028/www.scientific.net/AMM.773-774.1242 CR - [16] Syamani, F.A., Kusumah, S.S., Astri, L., Prasetio, K.W., Wibowo, E.S., and Subyakto, “Effect of pre-drying time and citric acid content on imperata cylindrical particleboards properties”, IOP Conference Series: Earth and Environmental Science, 209: 1–11, (2018). DOI: https://doi.org/10.1088/1755-1315/209/1/012034 CR - [17] Ruksakulpiwat, C., Wanasut, W., Singkum, A., and Ruksakulpiwat, Y., “Cogon grass fiber-epoxidized natural rubber composites”, Advance Materials Research, 747: 375–378, (2013). DOI: https://doi.org/10.4028/www.scientific.net/AMR.747.375 CR - [18] Kongkaew, P., Praneekrit, P., Rudchapo, T., and Khampui, K., “Mechanical and physical properties of water hyacinth and cogon grass fiber reinforced epoxy resin composites”, Journal of Physics: Conference Series, 2145: 012036, (2021). DOI: https://doi.org/10.1088/1742-6596/2145/1/012036 CR - [19] Pedzik, M., Auriga, R., Kristak, L., Antov, P., and Rogozinkski, T., “Physical and mechanical properties of particleboard produced with addition of walnut (Juglans regia L.) wood residues”, Materials, 15: 1280, (2022). DOI: https://doi.org/10.3390/ma15041280 CR - [20] Faria, D.F., Guimaraes, J.C.O., Protasio, T.D.P., Mendes, L.M., and Junior, J.B.G., “Conventional low-density particleboards produced with particles from Mauritia flexuosa and Eucalyptus Spp. Wood”, Clean Technologies and Environmental Policy, 24(9): 1–11, (2008). DOI: https://doi.org/10.21203/rs.3.rs-980174/v1 CR - [21] Lee, S.H., Lum, W.C., Boon, J.G., Kristak, L., Antov, P., Pedzik, M., Rogozinski, T., Taghiyari, H.R., Lubis, M.A.R., Fatriasari, W., Yadav, S.M., Chotikum, A., and Pizzi, A., “Particleboard from agricultural biomass and recycled wood waste: a review”, Journal of Materials Research and Technology, 20: 4630–4658, (2022). DOI: https://doi.org/10.1016/j.jmrt.2022.08.166 CR - [22] Som, S.N.M., Baharuddin, M.N.M., Zain, N.M., and Shaari, M.R., “The making of particleboard from palm oil fiber and dust wood with epoxy as a resin”, International Journal of Recent Technology and Engineering, 8(4): 11016–11019, (2019). DOI: https://doi.org/10.35940/ijrte.D5420.118419 CR - [23] Verma, C., Olansunkanmi, L.O., Akpan, E.D., Quraishi, M.A., Dagdag, O., Gouri, M.E., Sherif, E.D., and Ebenso, E.E., “Epoxy resins as anticorrosive polymeric materials: A review”, Reactive and Functional Polymers, 156: 10741, (2020). https://doi.org/10.1016/j.reactfunctpolym.2020.104741 CR - [24] Paluvai, N.R., Mohanty, S., and Nayak, S.K., “Synthesis and modifications of epoxy composites: A Review”, Polymer-Plastics Technology and Engineering, 53(16): 1723–1758, (2014). https://doi.org/10.1080/03602559.2014.919658 CR - [25] Gibson, G., “Epoxy resins”, Brydson’s Plastics Materials, 773–797, (2017). CR - [26] Lubis, M.R., Maimun, T., Kardi, J., and Masra, R.B., “Characterizing particleboard made of oil palm empty fruit bunch using central composite design”, Makara Journal of Science, 22(1): 17–28, (2018). DOI: https://doi.org/10.7454/mss.v22i1.6988 CR - [27] Boruszewski, P., Borysiuk, P., Maminski, M., and Czechowska, J., “Mat compression measurements during low-density particleboard manufacturing”, Bioresources, 11(3): 6909–6919, (2016). DOI: https://doi.org/10.15376/biores.11.3.6909-6919 CR - [28] Sotannde, O., “Evaluation of cement-bonded particle board produced from afzelia Africana wood residues”, Journal of Engineering Science and Technology, 7(6): 732–743, (2012). CR - [29] Laemlaksakul, V., “Physical and mechanical properties of particleboard from bamboo waste”, International Journal of Materials and Metallurgical Engineering, 4(4): 276–280, (2010). DOI: https://doi.org/10.5281/zenodo.1074531 CR - [30] Astari, L., Sudarmanto, and Akbar, F., “Characteristics of particleboards made from agricultural wastes”, IOP Conference Series: Earth and Environmental Science, 359: 012014, (2019). DOI: https://doi.org/10.1088/1755-1315/359/1/012014 CR - [31] Mirski, R., Dziurka, D., and Banaszak, A., “Properties of particleboards produced from various lignocellulosic particles”, Bioresources, 13(4): 7758–7765, (2018). DOI: https://doi.org/10.15376/biores.13.4.7758-7765 CR - [32] Lubis, M.R., Razi, F., Salsabilla, T., Kausar, and Husein, F.R., “Adhesive-particle ratio and avocado seed filler on the characteristics of particleboard made from oil palm oil empty fruit bunches”, Alchemy Jurnal Penelitian Kimia, 20(1): 70–81, (2024). DOI: https://doi.org/10.20961/alchemy.20.1.76881.70-81 CR - [33] Hamdan, M.H.M., Siregar, J.P., Cionita, T., Jaafar, J., Efriyohadi, A., Junid, R., and Kholil, A., “Water absorption behaviour on the mechanical properties of woven hybrid reinforced polyester composites”, The International Journal of Advanced Manufacturing Technology, 104: 1075–1086, (2019). DOI: https://doi.org/10.1007/s00170-019-03976-9 UR - https://doi.org/10.35378/gujs.1517336 L1 - https://dergipark.org.tr/en/download/article-file/4075617 ER -