TY - JOUR T1 - Unitification of weakly Rickart and weakly p.q.-Baer *-rings AU - Khairnar, Anil AU - More, Sanjay AU - Waphare, B. N. PY - 2025 DA - January Y2 - 2024 DO - 10.24330/ieja.1518558 JF - International Electronic Journal of Algebra JO - IEJA PB - Abdullah HARMANCI WT - DergiPark SN - 1306-6048 SP - 179 EP - 189 VL - 37 IS - 37 LA - en AB - S. K. Berberian raised the problem ``Can every weakly Rickart $*$-ring be embedded in a Rickart $*$-ring with preservation of right projections?". Berberian has given a partial solution to this problem. Khairnar and Waphare raised a similar problem for p.q.-Baer $*$-rings and gave a partial solution. In this paper, we give more general partial solutions to both the problems. KW - Weakly Rickart $*$-ring KW - weakly p.q.-Baer $*$-ring KW - projection KW - central cover CR - S. K. Berberian, Baer ∗-Rings, Die Grundlehren der mathematischen Wissenschaften, Band 195. Springer-Verlag, New York-Berlin, 1972. CR - G. F. Birkenmeier, J. Y. Kim and J. K. Park, Polynomial extensions of Baer and quasi-Baer rings, J. Pure Appl. Algebra, 159(1) (2001), 25-42. CR - G. F. Birkenmeier, J. K. Park and S. T. Rizvi, Extensions of Rings and Modules, Birkhauser/Springer, New York, 2013. CR - R. Hazrat and L. Vas, Baer and Baer ∗-ring characterizations of Leavitt path algebras, J. Pure Appl. Algebra, 222(1) (2018), 39-60. CR - C. Y. Hong, N. K. Kim and T. K. Kwak, Ore extensions of Baer and p.p.-rings, J. Pure Appl. Algebra, 151(3) (2000), 215-226. CR - I. Kaplansky, Rings of Operators, W. A. Benjamin, Inc., New York-Amsterdam, 1968. CR - A. Khairnar and B. N. Waphare, Order properties of generalized projections, Linear Multilinear Algebra, 65(7) (2017), 1446-1461. CR - A. Khairnar and B. N. Waphare, Unitification of weakly p.q.-Baer ∗-rings, Southeast Asian Bull. Math., 42(3) (2018), 387-400. CR - A. Khairnar and B. N. Waphare, Conrad’s partial order on p.q.-Baer ∗-rings, Discuss. Math. Gen. Algebra Appl., 38(2) (2018), 207-219. CR - A. Khairnar and B. N. Waphare, A sheaf representation of principally quasi-Baer ∗-rings, Algebr. Represent. Theory, 22(1) (2019), 79-97. CR - N. K. Thakare and B. N. Waphare, Partial solutions to the open problem of unitification of a weakly Rickart ∗-ring, Indian J. Pure Appl. Math., 28(2) (1997), 189-195. CR - N. K. Thakare and B. N. Waphare, Baer ∗-rings with finitely many elements, J. Combin. Math. Combin. Comput., 26 (1998), 161-164. CR - L. Vas, Class of Baer ∗-rings defined by a relaxed set of axioms, J. Algebra, 297(2) (2006), 470-473. CR - L. Vas, ∗-Clean rings; some clean and almost clean Baer ∗-rings and von Neumann algebras, J. Algebra, 324(12) (2010), 3388-3400. UR - https://doi.org/10.24330/ieja.1518558 L1 - https://dergipark.org.tr/en/download/article-file/4080720 ER -