TY - JOUR T1 - Optimization of pre-turning parameters for diamond burnishing of AISI 4340 steel AU - Aydın, Mevlüt AU - Gökcepınar, Ömer Faruk AU - Kalyoncu, Mete PY - 2024 DA - December Y2 - 2024 JF - Journal of Advances in Manufacturing Engineering JO - J Adv Manuf Eng PB - Yildiz Technical University WT - DergiPark SN - 2717-7203 SP - 29 EP - 36 VL - 5 IS - 2 LA - en AB - The presented study investigated for the first time the pre-turning performance before the diamond burnishing of AISI 4340 hardened steel under various cutting speeds, feed values, and cutting depths at flood cooling cutting conditions. Multi-objective optimization was conducted to obtain an effective pre-turning process regarding total cost and surface characteristics. The results showed that the pre-turning parameters must be optimized to benefit from diamond burnishing effectively. It was also observed that the diamond burnishing could have been more influential on pre-turned specimens with high surface roughness. Under the bohr-oil-added flood-cutting conditions, the average surface roughness and maximum roughness depth improved by 63.4% and 48.5%, respectively. The most influential parameters for average surface roughness and maximum roughness depth were the feed values with 98.2% and 99.3% contribution ratios, respectively. The Bees algorithm optimized the pre-turning parameters in terms of output parameters. The optimum cutting speed, feed values, and cutting depth levels are 264 m/min, 0.1325 mm/rev, and 0.55 mm, respectively. KW - Bees algorithm KW - Diamond burnishing KW - Optimization KW - Pre-turning CR - REFERENCES CR - [1] El-Axir, M. H. (2000). An investigation into roller burnishing. International Journal of Machine Tools and Manufacture, 40(11), 16031617. [CrossRef] CR - [2] Priyadarsini, C., Ramana, V. S. N. V., Prabha, K. A., & Swetha, S. (2019). A review on ball, roller, low plasticity burnishing process. Materials Today: Proceedings, 18, 5087–5099. [CrossRef] CR - [3] Babu, P. R., Prasad, T. S., Raju, A. V. S., & Babu, A. J. (2009). Effect of internal roller burnishing on surface roughness and surface hardness of mild steel. Journal of Scientific & Industrial Research, 68, 2931. CR - [4] Stalin John, M. R., Balaji, B., & Vinayagam, B. K. (2017). Optimisation of internal roller burnishing process in CNC machining center using response surface methodology. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39(10), 4045–4057. [CrossRef] CR - [5] Korzynski, M., Lubas, J., Swirad, S., & Dudek, K. (2011). Surface layer characteristics due to slide diamond burnishing with a cylindrical-ended tool. Journal of Materials Processing Technology, 211(1), 84–94. [CrossRef] CR - [6] Aydın, M., & Türköz, M. (2022). A study on the effect of the roller burnishing process on the axial fatigue performance and surface integrity of AISI 4340 steel. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 44(6), 1–16. [CrossRef] CR - [7] Livatyali, H., Has, E., & Türköz, M. (2020). Prediction of residual stresses in ball burnishing TI6AL4V thin sheets. International Journal of Advanced Manufacturing Technology, 110(3–4), 1083–1093. [CrossRef] CR - [8] Muñoz-Cubillos, J., Coronado, J. J., & Rodríguez, S. A. (2017). Deep rolling effect on fatigue behavior of austenitic stainless steels. International Journal of Fatigue, 95, 120–131. [CrossRef] CR - [9] Huuki, J., & Laakso, S. V. A. (2017). Surface improvement of shafts by the diamond burnishing and ultrasonic burnishing techniques. International Journal of Machining and Machinability of Materials, 19(3), 246–259. [CrossRef] CR - [10] Sachin, B., Narendranath, S., & Chakradhar, D. (2018). Experimental evaluation of diamond burnishing for sustainable manufacturing. Materials Research Express, 5(10), Article 106514. [CrossRef] CR - [11] Zaghal, J., Molnár, V., & Benke, M. (2023). Improving surface integrity by optimizing slide diamond burnishing parameters after hard turning of 42CrMo4 steel. International Journal of Advanced Manufacturing Technology, 128(5–6), 2087–2103. [CrossRef] CR - [12] Ouahiba, T., Hamid, H., Selma, B., & Laouar, L. (2024). Multi-objective optimization of slide diamond burnishing parameters for enhanced fatigue resistance of AISI 52100 steel. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 46(8), Article 451. [CrossRef] CR - [13] Cobanoglu, T., & Ozturk, S. (2015). Effect of burnishing parameters on the surface quality and hardness. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 229(2), 286–294. [CrossRef] CR - [14] Saldaña-Robles, A., Plascencia-Mora, H., Aguilera-Gómez, E., Saldaña-Robles, A., Marquez-Herrera, A., & Diosdado-De la Peña, J. A. (2018). Influence of ball-burnishing on roughness, hardness and corrosion resistance of AISI 1045 steel. Surface and Coatings Technology, 339, 191–198. [CrossRef] CR - [15] Rodríguez, A., López de Lacalle, L. N., Celaya, A., Lamikiz, A., & Albizuri, J. (2012). Surface improvement of shafts by the deep ball-burnishing technique. Surface and Coatings Technology, 206(11–12), 2817–2824. [CrossRef] CR - [16] Okada, M., Suenobu, S., Watanabe, K., Yamashita, Y., & Asakawa, N. (2015). Development and burnishing characteristics of roller burnishing method with rolling and sliding effects. Mechatronics, 29, 110–118. [CrossRef] CR - [17] López de Lacalle, L. N., Lamikiz, A., Sánchez, J. A., & Arana, J. L. (2007). The effect of ball burnishing on heat-treated steel and Inconel 718 milled surfaces. The International Journal of Advanced Manufacturing Technology, 32, 958968. [CrossRef] CR - [18] Sequera, A., Fu, C. H., Guo, Y. B., & Wei, X. T. (2014). Surface integrity of Inconel 718 by ball burnishing. Journal of Materials Engineering and Performance, 23(9), 3347–3353. [CrossRef] CR - [19] Qiao, Y., Chen, H., Qi, K., & Guo, P. (2020). Research on mechanical properties of 210cr12 shaft surface processed with rolling. Coatings, 10(7), Article 611. [CrossRef] CR - [20] Arun, K. R., & Stalin, P. M. R. (2021). Optimization of external roller burnishing process on magnesium silicon carbide metal matrix composite using response surface methodology. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43(7), 1–12. [CrossRef] CR - [21] Maximov, J. T., Duncheva, G. V., Anchev, A. P., Dunchev, V. P., & Ichkova, M. D. (2020). Improvement in fatigue strength of 41Cr4 steel through slide diamond burnishing. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(4), 1–20. [CrossRef] CR - [22] Bag, R., Panda, A., Sahoo, A. K., & Kumar, R. (2020). A comprehensive review on AISI 4340 hardened steel: Emphasis on industry ımplemented machining settings, implications, and statistical analysis. International CR - Journal of Integrated Engineering, 12(8), 61–82. [CrossRef] CR - [23] de Souza, M. F., Serrão, L. F., Pardal, J. M., Tavares, S. S. M., & Fonseca, M. C. (2022). Tempering influence on residual stresses and mechanical properties of AISI 4340 steel. International Journal of Advanced Manufacturing Technology, 120(1–2), 1123–1134. [CrossRef] CR - [24] Boozarpoor, M., & Elyasi, M. (2018). An investigation of the surface quality of burnished AISI 4340 steel. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 232(3), 299313. [CrossRef] CR - [25] Cammett, J. T., & Prevey, P. S. (2015). Fatigue strength restoration in corrossion pitted 4340 alloy steel via low plasticity Burnishing, Proceedings of the National Turbine Engine High Cycle Fatigue (HCF) Conference April 14-16, Monterey, CA, 2003. CR - [26] Avilés, A., Avilés, R., Albizuri, J., Pallarés-Santasmartas, L., & Rodríguez, A. (2019). Effect of shot-peening and low-plasticity burnishing on the high-cycle fatigue strength of DIN 34CrNiMo6 alloy steel. International Journal of Fatigue, 11, 338–354. [CrossRef] CR - [27] Khodabandeh, A., Sayadi, D., Rajabi, S., Khosrojerdi, M., Khajehzadeh, M., & Razfar, M. R. (2024). Surface integrity and fatigue behavior of AISI 4340 steel after hybrid laser-ultrasonic assisted ball burnishing process. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 238(15), 76077626. [CrossRef] CR - [28] Taguchi, G., & Wu, Y. (1979). Introduction to off-line quality control. Central Japan Quality Control Assoc. CR - [29] Pham, D. T., Ghanbarzadeh, A., Koç, E., Otri, S., Rahim, S., & Zaidi, M. (2006). The bees algorithm—a novel tool for complex optimisation problems. Intelligent production machines and systems (pp. 454459). Elsevier Science Ltd. [CrossRef] CR - [30] Groover, M. P. (2010). Fundamentals of modern manufacturing: materials, processes, and systems. John Wiley & Sons. CR - [31] Aggarwal, A., Singh, H., Kumar, P., & Singh, M. (2009). Optimizing feed and radial forces in CNC machining of P-20 tool steel through Taguchi’s parameter design approach. Indian Journal of Engineering & Materials Sciences, 16, 2332. CR - [32] St, L., & Wold, S. (1989). Analysis of variance (ANOVA). Chemometrics and İntelligent Laboratory Systems, 6(4), 259272. [CrossRef] UR - https://dergipark.org.tr/en/pub/jame/issue//1519936 L1 - https://dergipark.org.tr/en/download/article-file/4086775 ER -