TY - JOUR T1 - Localization in Wireless Sensor Networks Using Metaheuristic Algorithms TT - Kablosuz Sensör Ağlarında Meta-Sezgisel Algoritmalar ile Konum Tespiti AU - Hatipoğlu, Buğra AU - Eren, Tolga AU - Lüy, Murat PY - 2025 DA - July Y2 - 2024 DO - 10.29137/ijerad.1520344 JF - International Journal of Engineering Research and Development JO - IJERAD PB - Kirikkale University WT - DergiPark SN - 1308-5506 SP - 299 EP - 308 VL - 17 IS - 2 LA - en AB - Wireless sensor networks are utilized in a wide range of applications, where accurate determination of node positions is critical for network performance and energy efficiency. Metaheuristic algorithms, which have replaced traditional methods, offer significant advantages by providing more effective and faster solutions. In this study, Particle Swarm Optimization (PSO), Whale Optimization Algorithm (WOA), Monarch Butterfly Optimization Algorithm (MBOA), and Coati Optimization Algorithm (COA) were used to determine the positions of nodes in wireless sensor networks. The parameters of the proposed algorithms were determined using grid-search hyperparameter optimization. With the obtained optimal parameter values, the average error values of the metaheuristic algorithms were compared, and the results were observed. The results allow for evaluating the performance of the used algorithms and selecting the most suitable method. KW - Wireless Sensor Networks KW - Coati Optimization Algorithm KW - Localization KW - Hyperparameter Optimization” N2 - Kablosuz sensör ağları, çeşitli uygulama alanlarında geniş bir yelpazede kullanılmakta olup, düğüm konumlarının doğru bir şekilde belirlenmesi, ağ performansı ve enerji verimliliği açısından kritik öneme sahiptir. Geleneksel yöntemlerin yerini alan meta-sezgisel algoritmalar, daha etkili ve hızlı çözümler sunarak bu alanda önemli avantajlar sağlamaktadır. Bu çalışmada, Parçacık Sürü Optimizasyonu (PSO), Balina Optimizasyon Algoritması (WOA), Monark Kelebeği Optimizasyon Algoritması (MBOA) ve Coatí Optimizasyon Algoritması (COA) kullanılarak kablosuz sensör ağlarında düğüm noktalarının konum tespiti gerçekleştirilmiştir. Önerilen algoritmaların parametreleri belirlenirken, grid-search hiperparametre optimizasyonu gerçekleştirilmiştir. Bulunan optimum parametre değerleriyle birlikte, meta-sezgisel algoritmaların ortalama hata değerleri kıyaslanarak sonuçlar gözlemlenmiştir. Sonuçlar, kullanılan algoritmaların performansını değerlendirerek, en uygun yöntemin seçilmesine olanak tanımaktadır. CR - Arora, S., & Singh, S. (2017). Node Localization in Wireless Sensor Networks Using Butterfly Optimization Algorithm. Arabian Journal for Science and Engineering, 42(8), 3325–3335. https://doi.org/10.1007/s13369-017-2471-9 CR - Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of Machine Learning Research, 13(2), 281–305. CR - Dehghani, M., Montazeri, Z., Trojovská, E., & Trojovský, P. (2023). Coati Optimization Algorithm: A new bio-inspired metaheuristic algorithm for solving optimization problems. Knowledge-Based Systems, 259, 110011. https://doi.org/10.1016/J.KNOSYS.2022.110011 CR - Gou, P., He, B., & Yu, Z. (2021). A Node Location Algorithm Based on Improved Whale Optimization in Wireless Sensor Networks. Wireless Communications and Mobile Computing, 2021, 1–17. https://doi.org/10.1155/2021/7523938 CR - Kanoosh, H. M., Houssein, E. H., & Selim, M. M. (2019). Salp Swarm Algorithm for Node Localization in Wireless Sensor Networks. Journal of Computer Networks and Communications, 2019, 1–12. https://doi.org/10.1155/2019/1028723 CR - Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Proceedings of ICNN’95 - International Conference on Neural Networks, 4, 1942–1948. https://doi.org/10.1109/ICNN.1995.488968 CR - Mirjalili, S., & Lewis, A. (2016). The Whale Optimization Algorithm. Advances in Engineering Software, 95, 51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008 CR - Mohar, S. S., Goyal, S., & Kaur, R. (2021). Optimized Sensor Nodes Deployment in Wireless Sensor Network Using Bat Algorithm.Wireless Personal Communications, 116(4), 2835–2853. https://doi.org/10.1007/s11277-020-07823-z CR - Rajakumar, R., Amudhavel, J., Dhavachelvan, P., & Vengattaraman, T. (2017). GWO-LPWSN: Grey Wolf Optimization Algorithm for Node Localization Problem in Wireless Sensor Networks. Journal of Computer Networks and Communications, 2017. https://doi.org/10.1155/2017/7348141 CR - Sekhar, P., Lydia, E. L., Elhoseny, M., Al-Akaidi, M., Selim, M. M., & Shankar, K. (2021). An effective metaheuristic based node localization technique for wireless sensor networks enabled indoor communication. Physical Communication, 48, 101411. https://doi.org/10.1016/j.phycom.2021.101411 CR - Wang, G. G., Deb, S., & Cui, Z. (2019). Monarch butterfly optimization. Neural Computing and Applications, 31(7), 1995–2014. https://doi.org/10.1007/S00521-015-1923-Y/TABLES/7 CR - Wang, W., Liu, X., Li, M., Wang, Z., & Wang, C. (2019). Optimizing Node Localization in Wireless Sensor Networks Based on Received Signal Strength Indicator. IEEE Access, 7, 73880–73889. https://doi.org/10.1109/ACCESS.2019.292027 UR - https://doi.org/10.29137/ijerad.1520344 L1 - https://dergipark.org.tr/en/download/article-file/4088533 ER -