TY - JOUR T1 - General Upper Bounds for the Numerical Radii of Hilbert Space Operators AU - Al- Dolat, Mohammed PY - 2024 DA - August Y2 - 2024 DO - 10.55549/epstem.1523566 JF - The Eurasia Proceedings of Science Technology Engineering and Mathematics JO - EPSTEM PB - ISRES Publishing WT - DergiPark SN - 2602-3199 SP - 375 EP - 381 VL - 28 LA - en AB - We present a collection upper bounds for the numerical radii of a certain 2 × 2 operator matrices. We use these bounds to improve on some known numerical radius inequalities for powers of Hilbert space operators. In particular, we show that if 𝐴 is a bounded linear operator on a complex Hilbert space, then 𝑤 2𝑟 (𝐴) ≤ 1+𝛼 8 ‖|𝐴| 2𝑟 +|𝐴 ∗ | 2𝑟‖+ 1+𝛼 4 𝑤(|𝐴| 𝑟 |𝐴 ∗ | 𝑟 )+ 1−𝛼 2 𝑤 𝑟 (𝐴 2 ) for every r ≥ 1 and α ∈ [0,1]. This substantially improves on the existing inequality 𝑤 2𝑟 (𝐴) ≤ 1 2 ‖|𝐴| 2𝑟 + |𝐴 ∗ | 2𝑟‖. Here 𝑤(. ) and ||. || denote the numerical radius and the usual operator norm, respectively. KW - Numerical radius KW - Usual operator norm KW - Operator matrix KW - Buzano KW - s inequality. CR - Al-Dolat, M. (2024). General upper bounds for the numerical radii of Hilbert space operators The Eurasia Proceedings of Science, Technology, Engineering & Mathematics (EPSTEM), 28, 375-381. UR - https://doi.org/10.55549/epstem.1523566 L1 - https://dergipark.org.tr/en/download/article-file/4103072 ER -