TY - JOUR T1 - EXPLORING THE INTERPRETABILITY AND PREDICTIVE POWER OF MACHINE LEARNING MODELS IN TECHNOLOGY INDICES: A CASE STUDY TT - TEKNOLOJİ ENDEKSLERİNDE MAKİNE ÖĞRENİMİ MODELLERİNİN YORUMLANABİLİRLİĞİNİN VE TAHMİN GÜCÜNÜN ARAŞTIRILMASI: BİR VAK’A ÇALIŞMASI AU - Akusta, Ahmet AU - Salur, Mehmet Nuri PY - 2025 DA - August Y2 - 2025 DO - 10.18493/kmusekad.1530152 JF - Karamanoğlu Mehmetbey Üniversitesi Sosyal Ve Ekonomik Araştırmalar Dergisi PB - Karamanoglu Mehmetbey University WT - DergiPark SN - 2147-7833 SP - 743 EP - 757 VL - 27 IS - 49 LA - en AB - The paper is a comprehensive study of the performance evaluation of Aselsan in the Borsa Istanbul Technology Index, explaining the interpretability and predictability power of the machine learning models. The study encapsulates the technical indicators and the index data as variables and is conducted in a dataset of 600 days between November 20, 2020, and April 10, 2023. The data was split into two subsets, with 85% allocated to the training subset and 15% to the validation subset. Model training is conducted using the Orthogonal Matching Pursuit (OMP) algorithm. After the training, the model validates its prediction using previously unseen data. The results of the model's findings at this stage indicate the model's strong capacity to predict and robustly predict movements in Aselsan stock prices. Additionally, the model has an interpretability capacity that helps the user understand the decision process and the reasons behind the predictions. KW - Interpretability KW - Predictive Power KW - Stock Price KW - Machine Learning KW - Technology Indices N2 - Bu çalışma, Aselsan'ın Borsa İstanbul Teknoloji Endeksi'ndeki performans değerlendirmesini, makine öğrenmesi modellerinin yorumlanabilirlik ve öngörülebilirlik gücünü açıklayan kapsamlı bir çalışmadır. Çalışma, teknik göstergeleri ve endeks verilerini değişkenler olarak içermekte olup, 20 Kasım 2020 ile 10 Nisan 2023 tarihleri arasındaki 600 günlük bir veri setinde gerçekleştirilmektedir. Veri seti, eğitim alt kümesi için %85 ve doğrulama alt kümesi için %15 olmak üzere 85:15 veri bölünme oranıyla kullanılmıştır. Model eğitimi, Orthogonal Matching Pursuit (OMP) algoritması kullanılarak gerçekleştirilmiştir. Eğitim sonrasında model, daha önce görülmemiş verileri kullanarak tahminlerini doğrulamaktadır. Bu aşamadaki bulgular, modelin Aselsan hisse senedi fiyatlarındaki hareketleri öngörebilme ve güvenilir bir şekilde tahmin edebilme yeteneğinin güçlü olduğuna işaret etmektedir. Ayrıca model, kullanıcının karar sürecini anlamasına ve tahminlerin arkasındaki nedenleri görmesine yardımcı olan bir yorumlanabilirlik kapasitesine sahiptir. CR - Bondia, R., Ghosh, S., and Kanjilal, K. (2016). International Crude Oil Prices and the Stock Prices of Clean Energy and Technology Companies: Evidence from Non-Linear Cointegration Tests with Unknown Structural Breaks. Energy, 101, 558–565. https://doi.org/10.1016/j.energy.2016.02.031 CR - Cai, T. T., and Wang, L. (2011). Orthogonal Matching Pursuit for Sparse Signal Recovery with Noise. IEEE Transactions on Information Theory, 57(7), 4680–4688. https://doi.org/10.1109/tit.2011.2146090 CR - Camgöz, M. (2022). Temettü Veriminin BIST Hisse Senedi Fiyatlarını Tahmin Gücünün Nedensellik Testleriyle Analizi. İnsan ve Toplum Bilimleri Araştırmaları Dergisi. https://doi.org/10.15869/itobiad.1110269 CR - Carvalho, D. V, Pereira, E. M., and Cardoso, J. S. (2019). Machine Learning Interpretability: A Survey on Methods and Metrics. Electronics. Https://Doi.Org/10.3390/Electronics8080832 CR - Cheadle, C., Vawter, M. P., Freed, W. J., and Becker, K. G. (2003). Analysis Of Microarray Data Using Z Score Transformation. Journal Of Molecular Diagnostics. https://doi.org/10.1016/s1525-1578(10)60455-2 CR - Chmielewski, L., Amin, R., Wannaphaschaiyong, A., and Zhu, X. (2020). Network Analysis of Technology Stocks Using Market Correlation. Proceedings - 11th IEEE International Conference on Knowledge Graph, ICKG 2020, 267–274. https://doi.org/10.1109/icbk50248.2020.00046 CR - Curtis, A., Smith, T. M., Ziganshin, B. A., and Elefteriades, J. A. (2016). The Mystery of the Z-Score. Aorta. https://doi.org/10.12945/j.aorta.2016.16.014 CR - Dhutti, K., and Bahra, R. (2014). Stock Price Movement of Information Technology Sector Through Technical Analysis. CR - Dongrey, N. S. (2022). Study Of Market Indicators Used for Technical Analysis. International Journal of Engineering and Management Research. https://doi.org/10.31033/ijemr.12.2.11 CR - Fenton, T. R., and Sauve, R. (2007). Using The LMS Method To Calculate Z-Scores for The Fenton Preterm Infant Growth Chart. European Journal of Clinical Nutrition. https://doi.org/10.1038/sj.ejcn.1602667 CR - Gharghori, P., See, Q., and Veeraraghavan, M. (2011). Difference Of Opinion and The Cross-Section of Equity Returns: Australian Evidence. Pacific-Basin Finance Journal. https://doi.org/10.1016/j.pacfin.2011.03.004 CR - Gupta, V., Grover, G., and Arora, M. (2022). Trend In BMI Z-Score Among Private Schools’ Students in Delhi Using Multiple Imputation for Growth Curve Model. Epidemiology Biostatistics and Public Health. https://doi.org/10.2427/11836 CR - Hasbrouck, J. (2003). Intraday Price Formation in US Equity Index Markets. The Journal of Finance. https://doi.org/10.1046/j.1540-6261.2003.00609.x CR - Jefferson, A., Woodhead, H. J., Fyfe, S., Briody, J., Bebbington, A., Strauss, B. J. G., Jacoby, P., and Leonard, H. (2011). Bone Mineral Content and Density in Rett Syndrome And Their Contributing Factors. Pediatric Research. https://doi.org/10.1203/pdr.0b013e31820b937d CR - Kassouri, Y., Kacou, K. Y. T., and Alola, A. A. (2021). Are Oil-Clean Energy and High Technology Stock Prices in the Same Straits? Bubbles Speculation and Time-Varying Perspectives. Energy, 232, 121021. https://doi.org/10.1016/j.energy.2021.121021 CR - Kim, J. (2022). Market‐Wide Shocks and The Predictive Power for the Real Economy in The Korean Stock Market. Pacific Economic Review. https://doi.org/10.1111/1468-0106.12405 CR - Kocaarslan, B., and Soytas, U. (2019). Dynamic Correlations Between Oil Prices and the Stock Prices of Clean Energy and Technology Firms: The Role of Reserve Currency (US Dollar). Energy Economics, 84, 104502. https://doi.org/10.1016/j.eneco.2019.104502 CR - Kułaga, Z., Litwin, M., Tkaczyk, M., Różdżyńska, A., Barwicka, K., Grajda, A., Świąder, A., Gurzkowska, B., Napieralska, E., and Pan, H. (2010). The Height-, Weight-, And BMI-For-Age of Polish School-Aged Children and Adolescents Relative to International and Local Growth References. BMC Public Health. https://doi.org/10.1186/1471-2458-10-109 CR - Ling, P. W. (2013). The Stock Price Forecasting Comparative Research of The Use of Fractal Theory At Taiwan Traditional Industry and Technology Industry. Applied Mechanics and Materials, 274, 53–56. https://doi.org/10.4028/www.scientific.net/amm.274.53 CR - Liu, K. (2022). China’s Reform Spree In 2021: Common Prosperity and Others. Economic Papers A Journal of Applied Economics and Policy. Https://Doi.Org/10.1111/1759-3441.12365 CR - Martinez-Millana, A., Hulst, J. M., Boon, M., Witters, P., Fernandez-Llatas, C., Asseiceira, I., Calvo-Lerma, J., Basagoiti, I., Boeck, K. D., and Ribes-Koninckx, C. (2018). Optimisation Of Children Z-Score Calculation Based on New Statistical Techniques. Plos One. https://doi.org/10.1371/journal.pone.0208362 CR - Mcmillan, D. G. (2017). Predicting Firm Level Stock Returns: Implications for Asset Pricing and Economic Links. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3035982 CR - Mei, Z., and Grummer-Strawn, L. M. (2007). Standard Deviation of Anthropometric Z-Scores as a Data Quality Assessment Tool Using The 2006 WHO Growth Standards: A Cross Country Analysis. Bulletin of the World Health Organization. https://doi.org/10.2471/blt.06.034421 CR - Nasreen, S., Tiwari, A. K., Eizaguirre, J. C., and Wohar, M. E. (2020). Dynamic Connectedness Between Oil Prices and Stock Returns of Clean Energy and Technology Companies. Journal Of Cleaner Production, 260, 121015. CR - Neely, C. J., Rapach, D. E., Tu, J., and Zhou, G. (2014). Forecasting The Equity Risk Premium: The Role of Technical Indicators. Management Science. https://doi.org/10.1287/mnsc.2013.1838 CR - Oza, V., Thakkar, P., and Thakkar, P. (2022). A Dynamic Scenario‐Driven Technique for Stock Price Prediction and Trading. Journal Of Forecasting. https://doi.org/10.1002/for.2848 CR - Ramos-Llordén, G., Vegas-Sánchez-Ferrero, G., Liao, C., Westin, C.-F., Setsompop, K., and Rathi, Y. (2020). SNR- Enhanced Diffusion MRI With Structure-Preserving Low-Rank Denoising in Reproducing Kernel Hilbert Spaces. https://doi.org/10.48550/arxiv.2009.06600 CR - Sukmadilaga, C., Santoso, J. C., and Ghani, E. K. (2023). Can Accounting Value Relevance and Pricing Error Influence Stock Price of High-Technology Service Enterprises? Economies 2023, Vol. 11, Page 48, 11(2), 48. https://doi.org/10.3390/economies11020048 CR - Turhan, T., and Aydemir, E. (2021). A Financial Ratio Analysis on BIST Information and Technology Index (XUTEK) Using AHP-Weighted Grey Relational Analysis. Düzce Üniversitesi Bilim ve Teknoloji Dergisi. https://doi.org/10.29130/dubited.1011252 CR - Ürkmez, E. K., and Bölükbaşi, Ö. (2021). The Impact of Exchange Rates on Stock Prices for Turkey: An Asymmetric Non-Linear Cointegration Analysis. Marmara Üniversitesi İktisadi ve İdari Bilimler Dergisi. https://doi.org/10.14780/muiibd.960267 CR - Vasantha, S., Dhanraj, V., and Varadharajan, R. (2012). Stock Price Movement Through Technical Analysis: Empirical Evidence from The Information Technology Sector. Indian Journal of Finance, 6(10), 4–17. https://indianjournalofmarketing.com/index.php/ijf/article/view/72388 CR - Yahoo Finance. (N.D.). Yahoo Finance. Retrieved January 11, 2025, From Https://Finance.Yahoo.Com/ CR - Yeoh, W. W. (2022). The Study on The Impact of Klse Market Index Towards the Stock Price Performance Among the Leading Technology Companies. Opsearch: American Journal of Open Research, 1(2), 1–7. https://doi.org/10.58811/opsearch.v1i2.11 CR - Zhang, G., and Du, Z. (2017). Co-Movements Among the Stock Prices of New Energy, High-Technology and Fossil Fuel Companies in China. Energy, 135, 249–256. https://doi.org/10.1016/j.energy.2017.06.103 UR - https://doi.org/10.18493/kmusekad.1530152 L1 - https://dergipark.org.tr/en/download/article-file/4131248 ER -