TY - JOUR T1 - HİPER-KİŞİSELLEŞTİRME UYGULAMALARININ TÜKETİCİNİN ÇEVRİMİÇİ ETKİLEŞİME DEVAM ETME DAVRANIŞINA ETKİSİ TT - THE EFFECT OF HYPER-PERSONALIZATION APPLICATIONS ON CONSUMER'S CONTINUATION TO ONLINE INTERACTION BEHAVIOR AU - Alptekin, Nesrin AU - Başimi Holzer, Şebnem PY - 2025 DA - June Y2 - 2025 DO - 10.53443/anadoluibfd.1532705 JF - Anadolu Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi JO - AUİİBFD PB - Anadolu University WT - DergiPark SN - 2687-184X SP - 1 EP - 41 VL - 26 IS - 2 LA - tr AB - Bu çalışmanın amacı, hiper-kişiselleştirme uygulamalarının çevrimiçi mahremiyetle ilişkisini mahremiyet hesabı teorisi çerçevesinde incelemek ve tüketicinin etkileşime devam etme davranışına etkisini ölçmektir. Kolayda örnekleme yöntemi ile seçilen Türkiye’deki 18 yaş ve üzeri düzenli olarak çevrimiçi alışveriş yapan, sosyal medya hesaplarını ve eğlence platformlarını kullanan 400 tüketiciden çevrimiçi anket yoluyla elde edilen veriler kısmi en küçük kareler yapısal eşitlik modellemesi ile analiz edilmiştir. Analiz sonucunda elde edilen bulgular değerlendirildiğinde, mahremiyet hesabı teorisi çerçevesinde hiper-kişiselleştirme uygulamalarının tüketicilerin fayda ve risk algıları üzerinde pozitif yönde anlamlı bir etkisi olduğu görülmüştür. Algılanan faydanın ve riskin algılanan değer üzerinde ve algılanan değerin kişisel bilginin kullanımına isteklilik üzerinde pozitif yönde anlamlı etkisi vardır. Daha önce yaşanmış mahremiyet ihlali deneyiminin algılanan risk ve kişisel bilginin kullanımına isteklilik değişkenleri üzerinde anlamlı bir etkisi bulunmamakta, ancak işletmeye ve/veya platforma duyulan güven unsuru kişisel bilginin kullanımına isteklilik üzerinde pozitif yönde anlamlı bir etkiye sahiptir. Kişisel bilginin kullanımına istekliliğin çevrimiçi etkileşime devam etme davranışı üzerinde pozitif yönde anlamlı bir etkisi olduğu bulunmuştur. KW - Hiper-kişiselleştirme KW - Mahremiyet Hesabı KW - Etkileşime Devam Etme Davranışı N2 - The aim of this study is to examine the relationship of hyper-personalization applications with online privacy within the framework of privacy calculus theory and to measure their impact on the consumer's continuation to interaction behavior. The data obtained through an online survey from 400 consumers aged 18 and over in Turkey were selected by convenience sampling method and who regularly shop online, use social media accounts and entertainment platforms were analyzed by partial least squares structural equation modelling. When the findings obtained as a result of the analysis were evaluated, it was seen that hyper-personalization applications had a positive and significant effect on consumers’ benefit and risk perceptions within the framework of privacy calculus theory. Perceived benefit and risk have a significant positive effect on perceived value and perceived value has a significant positive effect on willingness to use personal information. It has been found that previous privacy violation experience does not have a significant effect on the variables of perceived risk and willingness to use personal information, while the element of trust in the business and/or platform has a positive significant effect on the willingness to use personal information. It has been found that willingness to use personal information has a positive and significant effect on continuation to online interaction behavior. CR - Ackermann, K. A., Burkhalter, L., Mildenberger, T., Frey, M. & Bearth, A. (2022). Willingness to share data: Contextual determinants of consumers’ decisions to share private data with companies. Journal of Consumer Behaviour, 21(2), 375–386. https://doi.org/10.1002/cb.2012 CR - Acquisti, A. (2004). Privacy in electronic commerce and the economics of immediate gratification. In Proceedings of the 5th ACM Electronic Commerce Conference (pp. 21-29). New York, NY: ACM. http://dx.doi.org/10.1145/988772.988777 CR - Acquisti, A., Brandimarte, L. & Loewenstein, G. (2015). Privacy and human behavior in the age of information. Science, 347(6221), 509–514. https://doi.org/10.1126/science.aaa1465 CR - Aguirre, E., Mahr, D., Grewal, D., de Ruyter, K. & Wetzels, M. (2015). Unraveling the personalization paradox: The effect of information collection and trust-building strategies on online advertisement effectiveness. Journal of Retailing, 91(1), 34–49. https://doi.org/10.1016/j.jretai.2014.09.005 CR - Aguirre-Urreta, M. I., & Hu, J. (2019). Detecting common method bias: Performance of the Harman’s single-factor test. Data Base for Advances in Information Systems, 50(2), 45–70. https://doi.org/10.1145/3330472.3330477 CR - Aldoseri, A., Al-Khalifa, K. N. & Hamouda, A. M. (2024). AI-Powered Innovation in Digital Transformation: Key Pillars and Industry Impact. Sustainability, 16(5), 1790. https://doi.org/10.3390/su16051790 CR - Al-Jabri, I. M., Eid, M. I. & Abed, A. (2019). The willingness to disclose personal information. Information and Computer Security, 28(2), 161–181. https://doi.org/10.1108/ics-01-2018-0012 CR - Amin, M. a. S., Johnson, V. L., Prybutok, V. & Koh, C. E. (2024). An investigation into factors affecting the willingness to disclose personal health information when using AI-enabled caregiver robots. Industrial Management & Data Systems, 124(4), 1677–1699. https://doi.org/10.1108/imds-09-2023-0608 CR - Ampong, G., Mensah, A., Adu, A., Addae, J., Omoregie, O. & Ofori, K. (2018). Examining Self-Disclosure on Social Networking Sites: A Flow Theory and Privacy Perspective. Behavioral Sciences, 8(6), 58. https://doi.org/10.3390/bs8060058 CR - Anderson, C. L. & Agarwal, R. (2011). The digitization of healthcare: boundary risks, emotion, and consumer willingness to disclose personal health information. Information Systems Research, 22(3), 469–490. https://doi.org/10.1287/isre.1100.0335 CR - Arora, N., Dreze, X., Ghose, A., Hess, J. D., Iyengor, R., Jing, B, Joshi,Y., Kumar, V. Lurie, N., Neslin, S. Sajeeh, S., Su, M., Thomas, J. & Zhang, Z. J. (2020). Putting one-to-one marketing to work: Personalization, customization, and choice. Marketing Letters, 31(3), 367-380. https://doi.org/10.1007/s11002-008-9056-z CR - Bandara, R., Fernando, M. & Akter, S. (2020). Explicating the privacy paradox: A qualitative inquiry of online shopping consumers. Journal of Retailing and Consumer Services, 52. https://doi.org/10.1016/j.jretconser.2019.101947 CR - Bansal, G., Zahedi, F. M. & Gefen, D. (2016). Do context and personality matter? Trust and privacy concerns in disclosing private information online. Information & Management 53(1), 1–21. https://offcampus.anadolu.edu.tr:2206/10.1016/j.im.2015.08.001 CR - Baek, Y. M., Kim, E. M. & Bae, Y. (2014). My privacy is okay, but theirs is endangered: Why comparative optimism matters in online privacy concerns. Computers in Human Behavior, 31, 48-56. https://doi.org/10.1016/j.chb.2013.10.010 CR - Barnes, S. B. (2006). Privacy paradox: Social networking in the United States. First Monday, 11(9). https://doi.org/10.5210/fm.v11i9.1394 CR - Bastos, J. A., & Bernardes, M. I. (2024). Understanding online purchases with explainable machine learning. Information, 15(10), 587. https://doi.org/10.3390/info15100587 CR - Beke, F. T., Eggers, F., Verhoef, P. C. & Wieringa, J. E. (2022). Consumers’ privacy calculus: The PRICAL index development and validation. International Journal of Research in Marketing (39)1, 20-41. https://doi.org/10.1016/j.ijresmar.2021.05.005 CR - Bélanger, F. & James, T. L. (2020). A Theory of Multilevel Information Privacy Management for the Digital Era. Information Systems Research 31(2), 510-536. https://doi.org/10.1287/isre.2019.0900 CR - Bilgihan, A., Kandampully, J. & Zhang, T. (2016). Towards a unified customer experience in online shopping environments: Antecedents and outcomes. International Journal of Quality and Service Sciences, 8(1), 102–119. https://doi.org/10.1108/IJQSS-07-2015-0054 CR - Bitkina, O. V., Jeong, H., Lee, B. C., Park, J., Park, J. & Kim, H. K. (2020). Perceived trust in artificial intelligence technologies: A preliminary study. Human Factors and Ergonomics in Manufacturing & Service Industries, 30(4), 282–290. https://doi.org/10.1002/hfm.20839 CR - Bleier, A. & Eisenbeiss, M. (2015). The Importance of Trust for Personalized Online Advertising. Journal of Retailing, 91(3), 390-409. https://doi.org/10.1016/j.jretai.2015.04.001 CR - Bleier, A., Goldfarb, A. & Tucker, C. (2020). Consumer privacy and the future of data-based innovation and marketing. International Journal of Research in Marketing, 37(3), 466–480. https://doi.org/10.1016/j.ijresmar.2020.03.006 CR - Boerman, S. C., Kruikemeier, S. & Borgesius, F. J. Z. (2018). Exploring Motivations for Online privacy Protection Behavior: Insights from panel data. Communication Research, 48(7), 953–977. https://doi.org/10.1177/0093650218800915 CR - Brown, B. (2001). Studying the internet experience. HP laboratories technical report HPL, 49. https://shiftleft.com/mirrors/www.hpl.hp.com/techreports/2001/HPL-2001-49.pdf (Erişim tarihi: 15.03.2024). CR - Bornschein, R., Schmidt, L. & Maier, E. (2020). The Effect of Consumers’ Perceived Power and Risk in Digital Information Privacy: The Example of Cookie Notices. Journal of Public Policy & Marketing, 39(2), 135–154. https://doi.org/10.1177/0743915620902143 CR - Brandimarte, L., Acquisti, A. & Loewenstein, G. (2013). Misplaced Confidences: Privacy and the Control Paradox. Social Psychological and Personality Science 4(3), 340–347. https://doi.org/10.1177/1948550612455931 CR - BTK. (2021). Bilgi ve İletişim Teknolojilerinde Gelişmeler, Yenilikler ve Örnek Çalışmalar. 01.06.2023 tarihinde https://www.btk.gov.tr/uploads/pages/gelismeler-yenilikler-ve-ornek-calismalar-bulteni/belgev2-21-04.pdf adlı adresten alınmıştır. CR - Budak, H. & Gümüştaş, E. (2022). Kişiselleştirilmiş ürün öneri sistemi için kullanıcı bazlı işbirlikçi filtreleme ve kümeleme kullanan hibrit bir yaklaşım. İstanbul Ticaret Üniversitesi Sosyal Bilimler Dergisi, 21(43), 253-268. https://doi.org/10.46928/iticusbe.1055162 CR - Chaudoir, S. R. & Fisher, J. D. (2010). The disclosure processes model: Understanding disclosure decision making and postdisclosure outcomes among people living with a concealable stigmatized identity. Psychological Bulletin, 136(2), 236–256. https://doi.org/10.1037/a0018193 CR - Chen, M., Huang, X. & Qi, X. (2024). To disclose or to protect? Predicting social media users’ behavioral intention toward privacy. Industrial Management & Data Systems, 124(6), 2091–2119. https://doi.org/10.1108/imds-05-2023-0337 CR - Chen, Y., Prentice, C., Weaven, S. & Hisao, A. (2022). The influence of customer trust and artificial intelligence on customer engagement and loyalty – The case of the home-sharing industry. Frontiers in Psychology, 13, 912339. https://doi.org/10.3389/fpsyg.2022.912339 CR - Chin, W. W. (1998). The Partial Least Squares Approach to Structural Equation Modelling. G. A. Marcoulides (Ed.), Modern Methods for Business Research (s. 295-336) içinde. London: Lawrence Erlbaum Associates. CR - Choi, H., Park, J. & Jung, Y. (2018). The role of privacy fatigue in online privacy behavior. Computers In Human Behavior, 81, 42-51. https://doi.org/10.1016/j.chb.2017.12.001 CR - Chiasson, S., Abdelaziz, Y. & Chanchary, F. (2018). Privacy concerns amidst OBA and the need for alternative models. IEEE Internet Computing, 22(2), 52–61. https://doi.org/10.1109/mic.2017.3301625 CR - Cohen, J.,Cohen, P., West, S. G. & Aiken, L. S. (2003). Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences. Hillsdale, NJ: Erlbaum. CR - Craig, V. S., Shim, J. T., Johnson, R. & Jiang, J. (2006). Concern for information privacy and online consumer Purchasing. Journal of the Association for Information Systems, 7(6), 415-431, 433-443. https://doi.org/10.17705/1jais.00092 CR - Culnan, M. J., & Armstrong, P. K. (1999). Information privacy concerns, procedural fairness and impersonal trust: an empirical investigation. Organization Science 10(1), 104–115. https://doi.org/10.1287/orsc.10.1.104 CR - Culnan, M. J. & Bies, R. J. (2003). Consumer privacy: Balancing economic and justice considerations. Journal of Social Issues, 59(2), 323-342. https://doi.org/10.1111/1540-4560.00067 CR - Çakır, F. S. (2019). Kısmi En Küçük Kareler Yapısal Eşitlik Modellemesi (PLS-SEM) ve Bir Uygulama. Sosyal Araştırmalar ve Davranış Bilimleri Dergisi, 5(9), 111-128. CR - Davenport, T., Guha, A., Grewal, D. & Bressgott, T. (2020). How artificial intelligence will change the future of marketing. Journal of the Academy of Marketing Science, 48, 24–42. https://doi.org/10.1007/s11747-019-00696-0 CR - Deloitte. (2020). Connecting with Meaning-Hyper Personalizing the Customer Experience Using Data, Analytics and AI. 27.05.2020 tarihinde https://www2.deloitte.com/content/dam/Deloitte/ca/Documents/deloitte-analytics/ca-en-omnia-ai-marketing-pov-fin-jun24-aoda.pdf adlı adresten alınmıştır. CR - Dienlin, T. & Trepte, S. (2015). Is the privacy paradox a relic of the past? An in-depth analysis of privacy attitudes and privacy behaviors. European Journal of Social Psychology, 45(3), 285–297. https://doi.org/10.1002/ejsp.2049 CR - Dinev, T. & Hart, P. (2006). An extended privacy calculus model for e-commerce transactions. Information Systems Research, 17(1), 61–80. https://doi.org/10.1287/isre.1060.0080 CR - Do, Q. & Trang, T. (2020). An approach based on machine learning techniques for forecasting Vietnamese consumers’ purchase behaviour.Decision Science Letters , 9(3), 313-322. http://dx.doi.org/10.5267/j.dsl.2020.5.004 CR - Doğan K. & Arslantekin S. (2016). Büyük veri: önemi, yapısı ve günümüzdeki durum. Ankara Üniversitesi Dil ve Tarih-Coğrafya Fakültesi Dergisi, 56(1), 16. https://doi.org/10.1501/Dtcfder_0000001461 CR - Dotcms. (2018). Hyper-Personalization: It's Time to Truly Meet Your Customers. 27.05.2023 tarihinde https://www.dotcms.com/reports/hyper-personalization-it-s-time-to-truly-meet-your-customers adlı adresten alınmıştır. CR - Dunakhe, K. & Panse, C. (2022). Impact of digital marketing – a bibliometric review. International Journal of Innovation Science, 14(3/4), 506-518. https://doi.org/10.1108/IJIS-11-2020-0263 CR - Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C. & Crick, T. (2019). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management. https://doi.org/10.1016/j.ijinfomgt.2019.08.002 CR - Estrada-Jiménez, J., Parra-Arnau, J., Rodríguez-Hoyos, A. & Forné, J. (2016). Online advertising: Analysis of privacy threats and protection approaches. Computer Communications, 100, 32–51. https://doi.org/10.1016/j.comcom.2016.12.016 CR - Fayyaz, Z., Ebrahimian, M., Nawara, D., Ibrahim, A. & Kashef, R. (2020). Recommendation Systems: Algorithms, Challenges, Metrics, and Business Opportunities. Applied Sciences, 10(21):7748. https://doi.org/10.3390/app10217748 CR - Ferreyra, N. E. D., Kroll, T., Aïmeur, E., Stieglitz, S. & Heisel, M. (2020). Preventative Nudges: Introducing risk cues for supporting online Self-Disclosure decisions. Information, 11(8), 399. https://doi.org/10.3390/info11080399 CR - Fornell, C. & Larcker, D.F.(1981). Structural equation models with unobservable variables and measurement error: algebra and statistics. Journal of Marketing Research,18(3), 382–388. https://doi.org/10.2307/3150980 CR - Fu, J., Zhang, J. & Li, X. (2023). How do risks and benefits affect user’ privacy decisions? An event-related potential study on privacy calculus process. Frontiers in Psychology, 14. https://doi.org/10.3389/fpsyg.2023.1052782 CR - Gudivada, V., Apon, A. & Ding, J. (2017). Data quality considerations for big data and machine-learning: Going beyond data cleaning and transformations. International Journal on Advances in Software, 10(1), 1–20. CR - Hair, J. F., Ringle, C. M. & Sarstedt, M. (2011). PLS-SEM: Indeed a Silver Bullet. Journal of Marketing Theory and Practice, 19(2), 139-152. https://doi.org/10.2753/MTP1069-6679190202 CR - Hair, J. F., Hult, T., Ringle, C., & Sarstedt, M. (2014). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). Thousand Oaks, CA: Sage Publications, Inc. CR - Hair, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., & Thiele, K. O. (2017). Mirror, mirror on the wall: a comparative evaluation of compositebased structural equation modeling methods. Journal of the Academy of Marketing Science, 45(5), 616–632. https://doi:10.1007/s11747-017-0517-x CR - Hallam, C. & Zanella, G. (2017). Online self-disclosure: The privacy paradox explained as a temporally discounted balance between concerns and rewards. Computers in Human Behavior, 68, 217-227. https://doi.org/10.1016/j.chb.2016.11.033 CR - Harris, L. C. & Goode, M. M. H. (2010). Online serviscapes, trust, and purchase intentions. Journal of Service Marketing. 24(3), 230-243. https://doi.org/10.1108/08876041011040631 CR - Hayes, J. L., Brinson, N. H., Bott, G. J. & Moeller, C. M. (2021). The influence of consumer–brand relationship on the personalized advertising privacy calculus in social media. Journal of Interactive Marketing, 55(1), 16–30. https://doi.org/10.1016/j.intmar.2021.01.001 CR - Helweg-Larsen, M. & Shepperd, J. A. (2001). Do moderators of the optimistic bias affect personal or target risk estimates? A review of the literature. Personality and Social Psychology Bulletin, 5(1), 75-95. https://doi.org/10.1207/S15327957PSPR0501_5 CR - Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115–135. https://doi.org/10.1007/s11747-014-0403-8 CR - Ho, F. N., Ho-Dac, N. & Huang, J. S. (2023). The effects of privacy and data breaches on consumers’ online Self-Disclosure, protection behavior, and message valence. SAGE Open, 13(3). https://doi.org/10.1177/21582440231181395 CR - Hoffmann, C. P., Lutz, C. & Ranzini, G. (2016). Privacy cynicism: A new approach to the privacy paradox. Cyberpsychology Journal of Psychosocial Research on Cyberspace, 10(4). https://doi.org/10.5817/cp2016-4-7 CR - Hu, L. T. & Bentler, P.M. (1999). Cutoff Criteria for Fit Indexes in Covariance Structure Analysis: Conventional Criteria Versus New Alternatives. Structural Equation Modelling: A Multidisciplinary Journal, 6(1), 1-55. https://doi.org/10.1080/10705519909540118 CR - Huang, M. & Rust, R. (2017). Technology-driven Service Strategy. Journal of the Academy of Marketing Science, 45(6), 906-924. https://doi.org/10.1007/s11747-017-0545-6 CR - Hulland, J. (1999). Use of Partial Least Squares (PLS) in Strategic Management Research: A Review of Four Recent Studies, Strategic Management Journal, 20(2), 195-204. CR - Ioannou, A., Tussyadiah, I. & Lu, Y. (2020). Privacy concerns and disclosure of biometric and behavioral data for travel. International Journal of Information Management, 54, 102122. https://doi.org/10.1016/j.ijinfomgt.2020.102122 CR - Jahari, S. A., Hass, A., Hass, D. & Joseph, M. (2022). Navigating privacy concerns through societal benefits: A case of digital contact tracing applications. Journal of Consumer Behaviour, 21(3), 625–638. https://doi.org/10.1002/cb.2029 CR - Jensen, C., Potts, C. & Jensen, C. (2005). Privacy practices of Internet users: Self-reports versus observed behavior. International Journal of Human-Computer Studies, 63(1–2), 203-227, https://doi.org/10.1016/j.ijhcs.2005.04.019 CR - Kaplan, A. & Haenlein, M. (2019). Siri, Siri, in My Hand: Who’s the Fairest in the Land? On the interpretations, illustrations, and implications of artificial intelligence. Business Horizons, 62(1): 15-25. https://doi.org/10.1016/j.bushor.2018.08.004 CR - Karim, M. & Rahman, R. (2013). Decision Tree and Naïve Bayes Algorithm for Classification and Generation of Actionable Knowledge for Direct Marketing. Journal of Software Engineering and Applications, 6(4), 196-206. https://doi.org/10.4236/jsea.2013.64025 CR - Kim, H. W., Chan, H. C. & Gupta, S. (2007). Value-based Adoption of Mobile Internet: An empirical investigation. Decision Support Systems, 43, 111-126. CR - Kim, D., Park, K., Park, Y. & Ahn, J. (2019). Willingness to provide personal information: Perspective of privacy calculus in IoT services. Computers in Human Behavior, 92, 273–281. https://doi.org/10.1016/j.chb.2018.11.022 CR - Kim, S. & Baek, T. H. (2017). Examining the antecedents and consequences of mobile app engagement. Telematics and Informatics, 35(1), 148–158. https://doi.org/10.1016/j.tele.2017.10.008 CR - Klein, C. T. F. & Helweg-Larsen, M. (2002). Perceived control and the optimistic bias: A meta-analytic review. Psychology and Health, 17, 437-446. https://doi.org/10.1080/0887044022000004920 CR - Kock, F., Berbekova, A., & Assaf, A. G. (2021). Understanding and managing the threat of common method bias: Detection, prevention and control. Tourism Management, 86, 1-10. https://doi.org/10.1016/j.tourman.2021.104330 CR - Komiak, S. Y. & Benbasat, I. (2006). The effects of personalization and familiarity on trust and adoption of recommendation agents, MIS Quarterly, 941–960. https://doi.org/10.2307/25148760 CR - Kotler, P. (2021). Pazarlama 5.0: İnsan için Teknoloji. Nişanstaşı Üniversitesi Yayınları. CR - Krishnan, C., Gupta, A., Gupta, A. & Singh, G. (2022). Impact of Artificial Intelligence-Based Chatbots on customer engagement and business growth. In Studies in big data (pp. 195–210). https://doi.org/10.1007/978-3-031-10869-3_11 CR - Laufer, R. S. & Wolfe, M. (1977). Privacy as a concept and a social issue: a multidimensional developmental theory. Journal of Social Issues, 33(3), 22–42. https://doi.org/10.1111/j.1540-4560.1977.tb01880.x CR - Lee, J. M. & Rha, J. Y. (2016). Personalization–privacy paradox and consumer conflict with the use of location-based mobile commerce. Computers in Human Behavior, 63, 453–462. https://doi.org/10.1016/j.chb.2016.05.056 CR - Leon, P. G., Ur, B., Shay, R., Wang, Y., Balebako, R. & Cranor, L. (2012). Why Johnny can't opt out: A usability evaluation of tools to limit online behavioral advertising. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp 589-598). CR - Li, Y. (2012). Theories in online information privacy research: A critical review and an integrated framework. Decision Support Systems, 54(1), 471-481, https://doi.org/10.1016/j.dss.2012.06.010 CR - Liu, Y., Zhao, H. & Yang, B. (2022). Research on customer churn prediction and model interpretability using GA-XGBoost algorithm. PLOS ONE, 17(8), e0289724. https://doi.org/10.1371/journal.pone.0289724 CR - Mach-Król, M. & Hadasik, B. (2021). On a certain research gap in big data mining for customer insights. Applied Sciences, 11(15), 6993. https://doi.org/10.3390/app11156993 CR - Maheswari, K. & Priya, P. P. A. (2017). Predicting customer behavior in online shopping using SVM classifier. In: 2017 IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS), Srivilliputtur, India. 1-5. https://doi.org/10.1109/ITCOSP.2017.8303085 CR - Malhotra, N. K., Kim, S. S. & Agarwal, J. (2004). Internet users’ information privacy concerns (IUIPC): The construct, the scale, and a causal model. Information Systems Research, 15(4), 336–355. https://doi.org/10.1287/isre.1040.0032 CR - Malle, B. F., Scheutz, M., Arnold, T., Voiklis, J. & Cusimano, C. (2015). Sacrifice one for the good of many? People apply different moral norms to human and robot agents. In: 10th ACM/IEEE international conference on human-robot interaction (HRI). Mart, 2015. pp. 117-124. IEEE. CR - Martin, K. D., Borah, A. & Palmatier, R. W. (2017). Data privacy: Effects on customer and firm performance. Journal of Marketing, 81(1), 36–58. https://doi.org/10.1509/jm.15.0497 CR - Martin, K. D. & Murphy, P. E. (2017). The role of data privacy in marketing: A review and research agenda. Journal of the Academy of Marketing Science, 45(2), 135-155. https://doi.org/10.1007/s11747-016-0495-4 CR - Massara, F., Raggiotto, F. & Voss, W. G. (2021). Unpacking the privacy paradox of consumers: A psychological perspective. Psychology and Marketing, 38(10), 1814–1827. https://doi.org/10.1002/mar.21534 CR - McKnight, D. H., Choudhury, V. & Kacmar, C. (2002). Developing and Validating Trust Measures for e-Commerce: An Integrative Typology. Information Systems Research, 13(3), 334–359. http://www.jstor.org/stable/23015741 CR - Metzger, M. J. (2007). Communication Privacy Management in Electronic Commerce. Journal of Computer-Mediated Communication, 12(2), 335–361, https://doi.org/10.1111/j.1083-6101.2007.00328.x CR - Milne, G. R., Rohm, A.J. & Bahl, S. (2004). Consumers’ Protection of Online Privacy and Identity. Journal of Consumer Affairs, 38, 217-232. https://doi.org/10.1111/j.1745-6606.2004.tb00865.x CR - Mousavi, R., Chen, R., Kim, D. J., & Chen, K. (2020). Effectiveness of privacy assurance mechanisms in users’ privacy protection on social networking sites from the perspective of protection motivation theory. Decision Support Systems, 135, 113323. https://doi.org/10.1016/j.dss.2020.113323 CR - Nobile, T. H. & Kalbaska, N. (2020). An Exploration of Personalization in Digital Communication. Insights in Fashion. 456-473. In: Nah, FH., Siau, K. (eds) HCI in Business, Government and Organizations. HCII 2020. Lecture Notes in Computer Science, vol 12204. Springer, Cham. https://doi.org/10.1007/978-3-030-50341-3_35 CR - Norberg, P. A., Horne, D. R. & Horne, D. A. (2007). The privacy paradox: Personal information disclosure intentions versus behaviors. Journal of Consumer Affairs, 41(1), 100–126. https://doi.org/10.1111/j.1745-6606.2006.00070.x CR - Omarzu, J. (2000). A disclosure decision model: Determining how and when individuals will Self-Disclose. Personality and Social Psychology Review, 4(2), 174–185. https://doi.org/10.1207/s15327957pspr0402_05 CR - Osatuyi, B., Passerini, K., Ravarini, A. & Grandhi, S. A. (2018). “ Fool me once, shame on you . . . then, I learn.” An examination of information disclosure in social networking sites. Computers in Human Behavior, 83, 73–86. https://doi.org/10.1016/j.chb.2018.01.018 CR - Paschen, J., Kietzmann, J. & Kietzmann, T. C. (2019). Artificial intelligence (AI) and its implications for market knowledge in B2B marketing. Journal of Business & Industrial Marketing, 34(7), 1410–1419. https://doi.org/10.1108/JBIM-10-2018-0295 CR - Plangger, K., Grewal, D., de Ruyter, K. & Tucker, C. (2022). The future of digital technologies in marketing: A conceptual framework and an overview. Journal of the Academy of Marketing Science 50, 1125–1134. https://doi.org/10.1007/s11747-022-00906-2 CR - Princi, E. & Krämer, N. C. (2020). Out of control – Privacy calculus and the effect of perceived control and moral considerations on the usage of IoT healthcare devices. Frontiers in Psychology, 11, 582054. https://doi.org/10.3389/fpsyg.2020.582054 CR - Podsakoff, P., MacKenzie, S., & Podsakoff, N. (2012). Sources of method bias in social science research and recommendations on how to control it. Annual Review Psychology, 63, 539-569. http://dx.doi.org/10.1146/annurev-psych-120710-100452 CR - Punj, G. N. (2018). Understanding individuals’ intentions to limit online personal information disclosures to protect their privacy: implications for organizations and public policy. Information Technology and Management, 20(3), 139–151. https://doi.org/10.1007/s10799-018-0295-2 CR - Quinn, K. (2014). An ecological approach to privacy: “Doing” online privacy at Midlife. Journal of Broadcasting & Electronic Media, 58(4), 562–580. https://doi.org/10.1080/08838151.2014.966357 CR - Rust, R. T. & Huang, M. H. (2014). The service revolution and the transformation of marketing science. Marketing Science, 33(2), 206–221. https://doi.org/10.1287/mksc.2013.0836 CR - Sabharwal, R. & Miah, S. J. (2021). A new theoretical understanding of big data analytics capabilities in organizations: A thematic analysis. Journal of Big Data, 8(1), 1-17. https://doi.org/10.1186/s40537-021-00543-6 CR - Saponaro, M., Le Gal, D., Gao, M., Guisiano, M. & Maniere, I. C. (2018). Challenges and opportunities of artificial intelligence in the fashion world. In: International Conference on Intelligent and Innovative Computing Applications (ICONIC). Aralık, 2018. pp. 1–5. IEEE. https://doi.org/10.1109/ICONIC.2018.8601258 CR - Shank, D. B., Graves, C., Gott, A., Gamez, P. & Rodriguez, S. (2019). Feeling our way to machine minds: people’s emotions when perceiving mind in artificial intelligence. Computers in Human Behavior, 98, 256–266. https://doi.org/10.1016/j.chb.2019.04.001 CR - Smit, E. G., Van Noort, G. & Voorveld, H. A. (2014). Understanding online behavioural advertising: User knowledge, privacy concerns and online coping behaviour in Europe. Computers in Human Behavior, 32, 15–22. https://doi.org/10.1016/j.chb.2013.11.008 CR - Smith, H. J., Milberg, J. S. & Burke, J. S. (1996). Information privacy: measuring individuals' concerns about organizational practices. MIS Quarterly 20 (2), 167–196. https://doi.org/10.2307/249477 CR - Smith, H. J., Dinev, T. & Xu, H. (2011). Information Privacy Research: An Interdisciplinary Review. MIS Quarterly. 35, 989-1016. CR - Sun, X., Pelet, J., Dai, S. & Ma, Y. (2023). The effects of trust, perceived risk, innovativeness, and deal proneness on consumers’ purchasing behavior in the livestreaming social commerce context. Sustainability, 15(23), 16320. https://doi.org/10.3390/su152316320 CR - Tam, K. Y. & Ho, S. Y. (2006). Understanding the Impact of Web Personalization on User Information Processing and Decision Outcomes. MIS Quarterly, 30(4), 865–890. https://doi.org/10.2307/25148757 CR - Tang, J., Zhang, B. & Xiao, S. (2022). Examining the intention of authorization via apps: Personality traits and expanded privacy calculus perspectives. Behavioral Sciences, 12(7), 218. https://doi.org/10.3390/bs12070218 CR - Tenenhaus, M., Vinzi, V. E. Chatelin, Y-M. & Lauro, C. (2004). PLS Path Modeling. Computational Statistics and Data Analysis, 48(1), 159-205. https://doi.org/10.1016/j.csda.2004.03.005 CR - Tiago, M. T. P. M. B. & Veríssimo, J. M. C. (2014). Digital marketing and social media: Why bother? Business Horizons, Elsevier, 57(6), 703-708. https://doi.org/10.1016/j.bushor.2014.07.002 CR - Tian, X., Chen, L. & Zhang, X. (2022). The Role of Privacy Fatigue in Privacy Paradox: A PSM and Heterogeneity Analysis. Applied Sciences, 12, 9702. https://doi.org/10.3390/app12199702 CR - Tiihonen, J. & Felfernig, A. (2017). An introduction to personalization and mass customization. Journal of Intelligent Information Systems, 49, 1–7. https://doi.org/10.1007/s10844-017-0465-4 CR - Toch, E., Wang, Y. & Cranor, L. F. (2012). Personalization and privacy: a survey of privacy risks and remedies in personalization-based systems. User Modeling and User-Adapted Interaction 22(1-2), 203-220. https://doi.org/10.1007/s11257-011-9110-z CR - Trepte, S. (2020). The social media privacy model: Privacy and communication in the light of social media affordances. Communication Theory, 31(4), 549-570. CR - Tsohou, A. & Papaioannou, T. (2021). Impacts of information privacy violations. In Springer eBooks (pp. 1–4). https://doi.org/10.1007/978-3-642-27739-9_1614-1 CR - Tufekci, Z. (2008). Grooming, gossip, Facebook and MySpace: What can we learn about these sites from those who won't assimilate? Information, Communication & Society, 11, 544–564. http://dx.doi.org/10.1080/13691180801999050 CR - Tyrväinen, O., Karjaluoto, H. & Saarijärvi, H. (2020). Personalization and hedonic motivation in creating customer experiences and loyalty in omnichannel retail. Journal of Retailing and Consumer Services, 57, 102233. https://doi.org/10.1016/j.jretconser.2020.102233 CR - Unni, R. & Harmon, R. (2007). Perceived Effectiveness of Push vs. Pull Mobile Location-based Advertising, Journal of Interactive Advertising 7(2), 28-40. CR - Van Der Schyff, K. & Flowerday, S. (2023). The mediating role of perceived risks and benefits when self-disclosing: A study of social media trust and FoMO. Computers & Security, 126, 103071. https://doi.org/10.1016/j.cose.2022.103071 CR - Veltri, G. A., Lupiáñez-Villanueva, F., Folkvord, F., Theben, A. & Gaskell, G. (2020). The impact of online platform transparency of information on consumers’ choices. Behavioural Public Policy, 7(1), 55–82. https://doi.org/10.1017/bpp.2020.11 CR - Vimalkumar, M., Sharma, S. K., Singh, J. B. & Dwivedi, Y. K. (2021). ‘Okay google, what about my privacy?’: User's privacy perceptions and acceptance of voice based digital assistants. Computers in Human Behavior, 120, 106763. https://doi.org/10.1016/j.chb.2021.106763 CR - Wang, J., Cao, Q. & Zhu, X. (2024). Privacy disclosure on social media: the role of platform features, group effects, trust and privacy concern. Library Hi Tech. https://doi.org/10.1108/lht-06-2023-0253 CR - Wang, N., Zhao, Y., Zhou, R. & Li, Y. (2022). Factors influencing users’ online information disclosure intention and the moderating effect of cultural background and platform type. Aslib Journal of Information Management, 75(6), 1178–1208. https://doi.org/10.1108/ajim-04-2022-0218 CR - Westin, A. F. (1967). Privacy and Freedom. Atheneum. CR - Wetzels, M., Odekerken-Schröder, G., & van Oppen, C. (2009). Using PLS path modeling for assessing hierarchical construct models: Guidelines and empirical illustration. MIS Quarterly, 33(1), 177- 195. https://doi.org/10.2307/20650284 CR - White, T. B. (2004). Consumer Disclosure and Disclosure Avoidance: A Motivational Framework. Journal of Consumer Psychology, 14(1–2): 41–51. https://doi.org/10.1207/s15327663jcp1401&2_6 CR - Wilson, D. W. & Valacich, J. S. (2012). Unpacking the Privacy Paradox: Irrational Decision-Making within the Privacy Calculus. Proceedings of the 33rd International Conference on Information Systems, 41, 114–125. CR - Wong, K. K. (2013). Partial least square structural equation modeling (PLS-SEM) techniques using SmartPLS. Marketing Bulletin, 24, 1-32. CR - Wu X., Zhu X., Wu G. Q. & Ding W. (2014). Data mining with big data, IEEE transactions on knowledge and data engineering, 26 (1), 97-107. https://doi.org/10.1109/TKDE.2013.109 CR - Xu, H. (2007). The Effects of Self-Construal and Perceived Control on Privacy Concerns. In: Twenty Eighth International Conference on Information Systems (ICIS). CR - Xu, H., Luo, X. (Robert), Carroll, John M. & Rosson M. B. (2011). The personalization privacy paradox: An exploratory study of decision making process for location-aware marketing. Decision Support Systems 51, 42-52. https://doi.org/10.1016/j.dss.2010.11.017 CR - Yıldız, E. (2021). SmartPLS ile Yapısal Eşitlik Modellemsi, Reflektif ve Formatif Yapılar. Seçkin Yayıncılık. CR - Yılmaz, V. & Kinaş, Y. (2021). Kısmi En Küçük Kareler Yapısal Eşitlik Modellemesiyle Mobil Bankacılık Kullanımının Araştırılması, Gazi İktisat ve İşletme Dergisi, 7(2), 133-149. https://doi.org/10.30855/gjeb.2021.7.2.004 CR - Young, A. & Quan-Haase, A. (2013). Privacy protection strategies on Facebook: The Internet privacy paradox revisited. Information, Communication & Society, 16, 479–500. http://dx.doi.org/10.1080/1369118x.2013.777757 CR - Zanker, M., Rook, L. & Jannach, D. (2019). Measuring the impact of online personalisation: Past, present and future. International Journal of Human-Computer Studies, 131, 160–168. https://doi.org/10.1016/j.ijhcs.2019.06.006 CR - Zhou H, Xiong, F. & Chen H. (2023). A Comprehensive Survey of Recommender Systems Based on Deep Learning. Applied Sciences, 13(20), 11378. https://doi.org/10.3390/app132011378 CR - Zhu, X., Cao, Q. & Liu, C. (2022). Mechanism of platform interaction on social media users’ intention to disclose privacy: A case study of TikTok APP. Information, 13(10), 461. https://doi.org/10.3390/info13100461 UR - https://doi.org/10.53443/anadoluibfd.1532705 L1 - https://dergipark.org.tr/en/download/article-file/4142679 ER -