TY - JOUR T1 - The blood-brain barrier: a focus on neurovascular unit components AU - Can, Betül AU - Alataş, İ. Özkan PY - 2024 DA - December Y2 - 2024 DO - 10.55971/EJLS.1533200 JF - European Journal of Life Sciences JO - Eur J Life Sci PB - Anadolu University WT - DergiPark SN - 2822-5333 SP - 127 EP - 135 VL - 3 IS - 3 LA - en AB - The blood–brain barrier (BBB) provides an optimum environment for neurons by ensuring the integrity and homeostasis of highly fragile brain cells under physiological conditions, protecting the brain from changes in the blood with both structural (tight junctions) and metabolic (enzymes) barriers, selective transport, and the metabolism and modification of substances in the blood and brain. The endothelial cells of the brain capillaries, located at the interfaces between the blood and the brain, are critical components that limit the permeability of the BBB. These cells have unique morphological, biochemical, and functional characteristics that distinguish them from those found in the peripheral vascular system. In addition to endothelial cells, astrocytic perivascular end-feet, pericytes, neurons, microglia, and smooth muscle cells also play significant roles in maintaining the homeostasis of the brain parenchyma. Thus, the BBB effectively prevents various molecules and therapeutic drugs from entering the brain parenchyma and reaching the target area at sufficiently high concentrations. The passage of a substance through the BBB and its entry into the brain depends on various factors, including the substance’s lipophilicity, diffusion capability, molecular weight, electrical charge, blood concentration, and multiple primary and secondary factors. Drug delivery systems developed in recent years, through techniques and methods aimed at controlled and safe opening or bypassing of the BBB, are believed to provide significant benefits in the lesion area by allowing therapeutic substances to optimally enter the brain from the circulation. This article provides a review of the BBB and its components, highlighting their significance among the brain’s different interfaces. It also discusses approaches for delivering therapeutic substances to the affected area under optimal conditions and concentrations in various brain pathologies. KW - Astrocytic perivascular end-feet KW - blood-brain barrier KW - drug delivery KW - microglia KW - neurovascular unit CR - Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis. (2010);37(1):13-25. https://doi.org/10.1016/j.nbd.2009.07.030. CR - Saunders NR, Ek CJ, Habgood MD, Dziegielewska KM. Barriers in the brain: a renaissance? Trends Neurosci. (2008);31(6):279-86. https://doi.org/10.1016/j.tins.2008.03.003 CR - Stokum JA, Gerzanich V, Simard JM. Molecular pathophysiology of cerebral edema. J Cereb Blood Flow Metab. (2016);36(3):513-38. https://doi.org/10.1177/0271678X15617172 CR - Badaut J, Ghersi-Egea JF, Thorne RG, Konsman JP. Blood-brain borders: a proposal to address limitations of historical blood-brain barrier terminology. Fluids Barriers CNS. (2024);21(1):3. https://doi.org/10.1186/s12987-023-00478-5 CR - McConnell HL, Mishra A. Cells of the Blood-Brain Barrier: An Overview of the Neurovascular Unit in Health and Disease. Methods Mol Biol. (2022);2492:3-24. https://doi.org/10.1007/978-1-0716-2289-6_1 CR - Zlokovic BV. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci. (2011);12(12):723-38. https://doi.org/10.1038/nrn3114 CR - Engelhardt B, Sorokin L. The blood-brain and the blood-cerebrospinal fluid barriers: function and dysfunction. Semin Immunopathol. (2009);31(4):497-511. https://doi.org/10.1007/s00281-009-0177-0 CR - Sá-Pereira I, Brites D, Brito MA. Neurovascular unit: a focus on pericytes. Mol Neurobiol. (2012);45(2):327-47. https://doi.org/10.1007/s12035-012-8244-2 CR - Srinivasan B, Kolli AR, Esch MB, Abaci HE, Shuler ML, Hickman JJ. TEER measurement techniques for in vitro barrier model systems. J Lab Autom. (2015);20(2):107-26. https://doi.org/10.1177/2211068214561025 CR - Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev. (2005);57(2):173-85. https://doi.org/10.1124/pr.57.2.4 CR - Kadry H, Noorani B, Cucullo L. A blood-brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS. (2020);17(1):69. https://doi.org/10.1186/s12987-020-00230-3 CR - Koziara JM, Lockman PR, Allen DD, Mumper RJ. The blood-brain barrier and brain drug delivery. J Nanosci Nanotechnol. (2006);6(9-10):2712-35. https://doi.org/10.1166/jnn.2006.441 CR - Minn A, Ghersi-Egea JF, Perrin R, Leininger B, Siest G. Drug metabolizing enzymes in the brain and cerebral microvessels. Brain Res Brain Res Rev. (1991);16(1):65-82. https://doi.org/10.1016/0165-0173(91)90020-9 CR - Cardoso FL, Brites D, Brito MA. Looking at the blood-brain barrier: molecular anatomy and possible investigation approaches. Brain Res Rev. (2010);64(2):328-63. https://doi.org/10.1016/j.brainresrev.2010.05.003 CR - Abbott NJ, Friedman A. Overview and introduction: the blood-brain barrier in health and disease. Epilepsia. (2012);53 Suppl 6(0 6):1-6. https://doi.org/10.1111/j.1528-1167.2012.03696.x CR - Carvey PM, Hendey B, Monahan AJ. The blood-brain barrier in neurodegenerative disease: a rhetorical perspective. J Neurochem. (2009);111(2):291-314. https://doi.org/10.1111/j.1471-4159.2009.06319.x CR - Filosa JA, Morrison HW, Iddings JA, Du W, Kim KJ. Beyond neurovascular coupling, role of astrocytes in the regulation of vascular tone. Neuroscience. (2016);323:96-109. https://doi.org/10.1016/j.neuroscience.2015.03.064 CR - Cohen-Kashi Malina K, Cooper I, Teichberg VI. Closing the gap between the in-vivo and in-vitro blood-brain barrier tightness. Brain Res. (2009);1284:12-21. https://doi.org/10.1016/j.brainres.2009.05.072 CR - Haydon PG, Carmignoto G. Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev. (2006);86(3):1009-31. https://doi.org/10.1152/physrev.00049.2005 CR - Salmina AB. Neuron-glia interactions as therapeutic targets in neurodegeneration. J Alzheimers Dis. (2009);16(3):485-502. https://doi.org/10.3233/JAD-2009-0988 CR - Koehler RC, Roman RJ, Harder DR. Astrocytes and the regulation of cerebral blood flow. Trends Neurosci. (2009);32(3):160-9. https://doi.org/10.1016/j.tins.2008.11.005 CR - Krueger M, Bechmann I. CNS pericytes: concepts, misconceptions, and a way out. Glia. (2010);58(1):1-10. https://doi.org/10.1002/glia.20898 CR - Alarcon-Martinez L, Yemisci M, Dalkara T. Pericyte morphology and function. Histol Histopathol. (2021);36(6):633-643. https://doi.org/10.14670/HH-18-314 CR - Bonkowski D, Katyshev V, Balabanov RD, Borisov A, Dore-Duffy P. The CNS microvascular pericyte: pericyte-astrocyte crosstalk in the regulation of tissue survival. Fluids Barriers CNS. (2011);8(1):8. https://doi.org/10.1186/2045-8118-8-8 CR - Dore-Duffy P, Katychev A, Wang X, Van Buren E. CNS microvascular pericytes exhibit multipotential stem cell activity. J Cereb Blood Flow Metab. (2006);26(5):613-24. https://doi.org/10.1038/sj.jcbfm.9600272 CR - Peppiatt CM, Howarth C, Mobbs P, Attwell D. Bidirectional control of CNS capillary diameter by pericytes. Nature. (2006);443(7112):700-4. https://doi.org/10.1038/nature05193 CR - Muoio V, Persson PB, Sendeski MM. The neurovascular unit - concept review. Acta Physiol (Oxf). (2014);210(4):790-8. https://doi.org/10.1111/apha.12250 CR - Armulik A, Genové G, Mäe M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, Johansson BR, Betsholtz C. Pericytes regulate the blood-brain barrier. Nature. (2010);468(7323):557-61. https://doi.org/10.1038/nature09522 CR - Bouchard BA, Shatos MA, Tracy PB. Human brain pericytes differentially regulate expression of procoagulant enzyme complexes comprising the extrinsic pathway of blood coagulation. Arterioscler Thromb Vasc Biol. (1997);17(1):1-9. https://doi.org/10.1161/01.atv.17.1.1 CR - Kim JA, Tran ND, Li Z, Yang F, Zhou W, Fisher MJ. Brain endothelial hemostasis regulation by pericytes. J Cereb Blood Flow Metab. (2006);26(2):209-17. https://doi.org/10.1038/sj.jcbfm.9600181 CR - Kim SU, de Vellis J. Microglia in health and disease. J Neurosci Res. (2005);81(3):302-13. https://doi.org/10.1002/jnr.20562 CR - Nayak D, Roth TL, McGavern DB. Microglia development and function. Annu Rev Immunol. (2014);32:367-402. https://doi.org/10.1146/annurev-immunol-032713-120240 CR - Colonna M, Butovsky O. Microglia Function in the Central Nervous System During Health and Neurodegeneration. Annu Rev Immunol. (2017);35:441-468. https://doi.org/10.1146/annurev-immunol-051116-052358 CR - Rodríguez-Gómez JA, Kavanagh E, Engskog-Vlachos P, Engskog MKR, Herrera AJ, Espinosa-Oliva AM, Joseph B, Hajji N, Venero JL, Burguillos MA. Microglia: Agents of the CNS Pro-Inflammatory Response. Cells. (2020);9(7):1717. https://doi.org/10.3390/cells9071717 CR - Ronaldson PT, Davis TP. Regulation of blood-brain barrier integrity by microglia in health and disease: A therapeutic opportunity. J Cereb Blood Flow Metab. (2020);40(1_suppl):S6-S24. https://doi.org/10.1177/0271678X20951995 CR - Bernier LP, Bohlen CJ, York EM, Choi HB, Kamyabi A, Dissing-Olesen L, Hefendehl JK, Collins HY, Stevens B, Barres BA, MacVicar BA. Nanoscale Surveillance of the Brain by Microglia via cAMP-Regulated Filopodia. Cell Rep. (2019);27(10):2895-2908.e4. https://doi.org/10.1016/j.celrep.2019.05.010 CR - Mosser CA, Baptista S, Arnoux I, Audinat E. Microglia in CNS development: Shaping the brain for the future. Prog Neurobiol. (2017);149-150:1-20. https://doi.org/10.1016/j.pneurobio.2017.01.002 CR - Liu LR, Liu JC, Bao JS, Bai QQ, Wang GQ. Interaction of Microglia and Astrocytes in the Neurovascular Unit. Front Immunol. (2020);11:1024. https://doi.org/10.3389/fimmu.2020.01024 CR - Kaur IP, Bhandari R, Bhandari S, Kakkar V. Potential of solid lipid nanoparticles in brain targeting. J Control Release. (2008);127(2):97-109. https://doi.org/10.1016/j.jconrel.2007.12.018 CR - Witt KA, Gillespie TJ, Huber JD, Egleton RD, Davis TP. Peptide drug modifications to enhance bioavailability and blood-brain barrier permeability. Peptides. (2001);22(12):2329-2343. https://doi:10.1016/s0196-9781(01)00537-x CR - Pardridge WM. Blood-brain barrier delivery. Drug Discov Today. (2007);12(1-2):54-61. https://doi.org/10.1016/j.drudis.2006.10.013 CR - Pardridge WM. Molecular Trojan horses for blood-brain barrier drug delivery. Curr Opin Pharmacol. (2006);6(5):494-500. https://doi:10.1016/j.coph.2006.06.001 CR - Gosselet F, Loiola RA, Roig A, Rosell A, Culot M. Central nervous system delivery of molecules across the blood-brain barrier. Neurochem Int. (2021);144:104952. https://doi: 10.1016/j.neuint.2020.104952. CR - Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. (2001);46(1-3):3-26. https://doi:10.1016/s0169-409x(00)00129-0 CR - Roskoski R Jr. Rule of five violations among the FDA-approved small molecule protein kinase inhibitors. Pharmacol Res. (2023);191:106774. https://doi:10.1016/j.phrs.2023.106774 CR - Murugesan A, Konda Mani S, Koochakkhani S, et al. Design, synthesis and anticancer evaluation of novel arylhydrazones of active methylene compounds. Int J Biol Macromol. (2024);254(Pt 3):127909. https://doi:10.1016/j.ijbiomac.2023.127909 CR - Huwyler J, Wu D, Pardridge WM. Brain drug delivery of small molecules using immunoliposomes. Proc Natl Acad Sci U S A. (1996) Nov 26;93(24):14164-9. https://doi.org/10.1073/pnas.93.24.14164 CR - Chen TC, Wang W, Schönthal AH. From the groin to the brain: a transfemoral path to blood-brain barrier opening. Oncotarget. (2023);14:413-416. https://doi.org/10.18632/oncotarget.28414 CR - Sánchez-Dengra B, González-Álvarez I, Bermejo M, González-Álvarez M. Access to the CNS: Strategies to overcome the BBB. Int J Pharm. (2023);636:122759. https://doi: 10.1016/j.ijpharm.2023.122759 CR - Fong H, Zhou B, Feng H, Luo C, Bai B, Zhang J, Wang Y. Recapitulation of Structure-Function-Regulation of Blood-Brain Barrier under (Patho)Physiological Conditions. Cells. (2024);13(3):260. https://doi.org/10.3390/cells13030260 CR - Virtanen PS, Ortiz KJ, Patel A, Blocher WA 3rd, Richardson AM. Blood-Brain Barrier Disruption for the Treatment of Primary Brain Tumors: Advances in the Past Half-Decade. Curr Oncol Rep. (2024);26(3):236-249. https://doi.org/10.1007/s11912-024-01497-7 CR - Wang M, Etu J, Joshi S. Enhanced disruption of the blood brain barrier by intracarotid mannitol injection during transient cerebral hypoperfusion in rabbits. J Neurosurg Anesthesiol. (2007);19(4):249-56. https://doi.org/10.1097/ANA.0b013e3181453851 CR - Hasegawa Y, Iuchi T, Sakaida T, Yokoi S, Kawasaki K. The influence of carmustine wafer implantation on tumor bed cysts and peritumoral brain edema. J Clin Neurosci. (2016);31:67-71. https://doi.org/10.1016/j.jocn.2015.12.033 CR - Liu HL, Hua MY, Chen PY, Chu PC, Pan CH, Yang HW, Huang CY, Wang JJ, Yen TC, Wei KC. Blood-brain barrier disruption with focused ultrasound enhances delivery of chemotherapeutic drugs for glioblastoma treatment. Radiology. (2010);255(2):415-25. https://doi.org/10.1148/radiol.10090699 CR - Gernert M, Feja M. Bypassing the Blood-Brain Barrier: Direct Intracranial Drug Delivery in Epilepsies. Pharmaceutics. (2020);12(12):1134. https://doi:10.3390/pharmaceutics12121134 CR - Sousa F, Dhaliwal HK, Gattacceca F, Sarmento B, Amiji MM. Enhanced anti-angiogenic effects of bevacizumab in glioblastoma treatment upon intranasal administration in polymeric nanoparticles. J Control Release. (2019);309:37-47. https://doi:10.1016/j.jconrel.2019.07.033 CR - Ferreira NN, de Oliveira Junior E, Granja S, Boni FI, Ferreira LMB, Cury BSF, Santos LCR, Reis RM, Lima EM, Baltazar F, Gremião MPD. Nose-to-brain co-delivery of drugs for glioblastoma treatment using nanostructured system. Int J Pharm. (2021);603:120714. https://doi:10.1016/j.ijpharm.2021.120714 UR - https://doi.org/10.55971/EJLS.1533200 L1 - https://dergipark.org.tr/en/download/article-file/4144906 ER -