TY - JOUR T1 - Assessment of Methanol Production Potential from Industrial By-Product Gases AU - Inceoglu, Didem AU - Sakallı, Selver AU - Afacan, Zeynep AU - Ünal, Erdal AU - Işık Gülsaç, Işıl AU - Er, Ömer Orçun AU - Ataç, Özlem PY - 2024 DA - December Y2 - 2024 DO - 10.18185/erzifbed.1533652 JF - Erzincan University Journal of Science and Technology PB - Erzincan Binali Yildirim University WT - DergiPark SN - 2149-4584 SP - 37 EP - 51 IS - SUIC LA - en AB - As global efforts intensify to mitigate climate change, innovative strategies are being explored to convert industrial by-product gases into valuable commodities, thereby contributing to sustainable practices and reducing carbon footprints. This study focuses on the potential for methanol production from carbon monoxide (CO) and carbon dioxide (CO2) present in industrial gases, using hydrogen as a reactant. Kinetic models entered in to ASPEN HYSYS were employed to predict conversion rates, which were subsequently validated through laboratory-scale experiments. The highest conversion rates achieved were 69% for CO and 10% for CO2, highlighting the feasibility of converting waste gases into methanol, a key component in the circular economy. KW - CCUS KW - Circular Economy KW - Methanol Production KW - CO2 Conversion KW - CO Conversion CR - [1] Republic of Türkiye Ministry of Industry and Technology, & PwC. (2023, October). A low carbon pathway for the steel sector in the Republic of Türkiye. Republic of Türkiye Ministry of Industry and Technology. CR - [2] Mac Dowell, N., Fennell, P. S., Shah, N., & Maitland, G. C. (2017). The role of CO2 capture and utilization in mitigating climate change. Nature Climate Change, 7(4), 243– 249. https://doi.org/10.1038/nclimate3231 CR - [3] Garcia, G., Arriola, E., Chen, W. H., & De Luna, M. D. (2021). A comprehensive review of hydrogen production from methanol thermochemical conversion for sustainability. Energy, 217, 119384. https://doi.org/10.1016/j.energy.2020.119384 CR - [4] Dalena, F., Senatore, A., Marino, A., Gordano, A., Basile, M., & Basile, A. (2018). Methanol production and applications: An overview. In Methanol (pp. 3–28). https://doi.org/10.1016/B978-0-444-63903-5.00001-7 CR - [5] Hoseiny, S., Zare, Z., Mirvakili, A., Setoodeh, P., & Rahimpour, M. R. (2016). Simulation-based optimization of operating parameters for methanol synthesis process: Application of response surface methodology for statistical analysis. Journal of Natural Gas Science and Engineering, 34, 439–448. https://doi.org/10.1016/j.jngse.2016.07.040 CR - [6] Ren, B. P., Xu, Y. P., Huang, Y. W., She, C., & Sun, B. (2023). Methanol production from natural gas reforming and CO2 capturing process: Simulation, design, and techno- economic analysis. Energy, 263, 125879. https://doi.org/10.1016/j.energy.2023.125879 CR - [7] Schwiderowski, P., Ruland, H., & Muhler, M. (2022). Current developments in CO2 hydrogenation towards methanol: A review related to industrial application. Current Opinion in Green and Sustainable Chemistry, 38, 100688. https://doi.org/10.1016/j.cogsc.2022.100688 CR - [8] Li, J., Ma, X., Liu, H., & Zhang, X. (2018). Life cycle assessment and economic analysis of methanol production from coke oven gas compared with coal and natural gas routes. Journal of Cleaner Production, 185, 299–308. https://doi.org/10.1016/j.jclepro.2018.02.261 CR - [9] Lundgren, J., Ekbom, T., Hulteberg, C., Larsson, M., Grip, C. E., Nilsson, L., & Tunå, P. (2013). Methanol production from steel-work off-gases and biomass-based synthesis gas. Applied Energy, 112, 431–439. https://doi.org/10.1016/j.apenergy.2012.12.065 CR - [10] Jeong, J. H., Kim, S., Park, M. J., & Lee, W. B. (2022). Multi-objective optimization of a methanol synthesis process: CO2 emission vs. economics. Korean Journal of Chemical Engineering, 39(7), 1709–1716. https://doi.org/10.1007/s11814- 022-1077-2 CR - [11] Lee, J. S., Lee, K. H., Lee, S. Y., & Kim, Y. G. (1993). A comparative study of methanol synthesis from CO2/H2 and CO/H2 over a Cu/ZnO/Al2O3 catalyst. Journal of Catalysis, 144(2), 414–424. https://doi.org/10.1006/jcat.1993.1335 CR - [12] Sun, Q., Zhang, Y., Chen, H., Deng, J., Wu, D., & Chen, S. (1997). A novel process for the preparation of Cu/ZnO and Cu/ZnO/Al2O3 ultrafine catalyst: Structure, surface properties, and activity for methanol synthesis from CO2+H2. Journal of Catalysis, 167(1), 92–105. https://doi.org/10.1006/jcat.1997.1575 CR - [13] Lee, J. S., Han, S. H., Kim, H. G., Lee, K. H., & Kim, Y. G. (2000). Effects of space velocity on methanol synthesis from CO2/CO/H2 over Cu/ZnO/Al2O3 catalyst. Korean Journal of Chemical Engineering, 17(3), 332–336. https://doi.org/10.1007/BF02698687 CR - [14] Yin, X., & Leung, Y. C. (2004). Characteristics of the synthesis of methanol using biomass-derived syngas. Energy & Fuels, 19(1), 305–310. https://doi.org/10.1021/ef040027p CR - [15] An, X., Zuo, Y., Zhang, Q., & Wang, J. (2009). Methanol synthesis from CO2 hydrogenation with a Cu/Zn/Al/Zr fibrous catalyst. Chinese Journal of Chemical Engineering, 17(1), 88–94. https://doi.org/10.1016/S1004-9541(09)60026-5 CR - [16] Samiee, L., & Ghasemi Kafrudi, E. (2021). Assessment of different kinetic models of carbon dioxide transformation to methanol via hydrogenation, over a Cu/ZnO/Al2O3 catalyst. Reaction Kinetics, Mechanisms and Catalysis, 133(2), 801– 823. https://doi.org/10.1007/s11144-021-02010-4 CR - [17] Adil, A., Prasad, B., & Rao, L. (2023). Methanol generation from bio-syngas: Experimental analysis and modeling studies. Environment, Development and Sustainability, 26(8), 21503–21527. https://doi.org/10.1007/s10668-023-02902-5 CR - [18] Shirdel, S., Valand, S., Fazli, F., Winther-Sørensen, B., Aromada, S. A., Karunarathne, S., & Øi, L. E. (2022). Sensitivity analysis and cost estimation of a CO2 capture plant in Aspen HYSYS. ChemEngineering, 6(2), 28. https://doi.org/10.3390/chemengineering6020028 CR - [19] Graaf, G. H., & Beenackers, A. A. C. M. (1996). Comparison of two-phase and three-phase methanol synthesis processes. Chemical Engineering and Processing: Process Intensification, 35(6), 413–427. https://doi.org/10.1016/S0255- 2701(96)04127-9 CR - [20] Budhraja, N., Pal, A., & Mishra, R. S. (2023). Optimizing methanol reforming parameters for enhanced hydrogen selectivity in an Aspen HYSYS simulator using response surface methodology. Energy Technology, 11(7), 2300203. https://doi.org/10.1002/ente.202300203 CR - [21] Rahman, D. (2012). Kinetic modeling of methanol synthesis from carbon monoxide, carbon dioxide, and hydrogen over a Cu catalyst [Master’s thesis, San Jose State University]. CR - [22] Zhang, Y., Sun, Q., Deng, J., Wu, D., & Chen, S. (1997). A h igh activity Cu/ZnO/Al2O3 catalyst for methanol synthesis: Preparation and catalytic properties. Applied Catalysis A: General, 158(1–2), 105–120. https://doi.org/10.1016/S0926- 860X(96)00288-0 CR - [23] Sizgek, G. D., Curry-Hyde, H. E., & Wainwright, M. S. (1994). Methanol synthesis over copper and ZnO-promoted copper surfaces. Applied Catalysis A: General, 115(1), 15–28. https://doi.org/10.1016/0926-860X(94)80057-4 UR - https://doi.org/10.18185/erzifbed.1533652 L1 - https://dergipark.org.tr/en/download/article-file/4146930 ER -