TY - JOUR T1 - Nanoteknoloji Uygulamalarının Tekstil Endüstrisine Yansımaları ve Gelecek Perspektifi Üzerine Genel Bir Bakış TT - An Overview of the Reflections of Nanotechnology Applications on the Textile Industry and Future Perspectives AU - Akın, Muhammed Bora AU - Doruk, Semahat AU - Ulutaş, Burcu PY - 2024 DA - December Y2 - 2024 JF - Gazi Journal of Engineering Sciences JO - GJES PB - Parantez Teknoloji WT - DergiPark SN - 2149-9373 SP - 657 EP - 675 VL - 10 IS - 3 LA - tr AB - Tekstil, insan hayatının çok yönlü bir parçasıdır. Giyimden ev dekorasyonuna, endüstriyel uygulamalardan ekonomik etkilere kadar, tekstil ürünleri insanların günlük yaşamlarında önemli bir rol oynar. Giysi ve aksesuarlar kişisel ifade biçimlerini yansıtırken, ev tekstilleri yaşam alanlarını güzelleştirir ve konfor sağlar. Ayrıca, tekstil endüstrisi dünya çapında milyonlarca insan için iş imkanı oluşturur. Geleneksel tekstil sektörü, insan hayatını kültürel, sosyal ve ekonomik açılardan etkilemektedir. Bununla birlikte özel şartlar özel ekipman ve dolayısıyla özel tekstiller gerektirmektedir. Metal endüstrisinde ısı dayanımı yüksek ve geç tutuşan, kimyasal üretim sektöründe çeşitli kimyasallara karşı koruma sağlayan tekstiller için özel mühendislik ve üretim teknolojileri devreye girmektedir. Değişen yaşam şartları insanları yeni arayışlara itmektedir. Bu bağlamda kullanılan tekstillerin de insanların değişen yaşam koşullarıyla arayışlarına cevap niteliğinde değişmesi kaçınılmazdır. Tekstillerin sadece antibakteriyel, hızlı ve büyük sıcaklık değişimlerine dayanıklı, radyasyon ve fiziksel aşınmaya karşı koruma sağlama gibi hali hazırda arzu edilen özellikler dışında gelişen teknoloji ile başka özelliklere de sahip olması talep edilecektir. Özellikle insanların sağlık durumlarının sürekli olarak takip edilmesi için kullanılacak sensörler ile sağlık izleme sırasında ve nesnelerin interneti (IoT) sistemine bağlanırken gerekli enerjiyi kendiliğinden üretebilecek tekstillerin gelecekte kullanılması olasıdır. Bu makalede son yıllardaki önemli nanoteknolojinin tekstil uygulamaları hakkındaki çalışmalar incelenmekte ve ileriye yönelik yol haritası oluşturulmaktadır. KW - Nanoteknoloji KW - Tekstil KW - Kumaş KW - Inovasyon N2 - Textiles are a multifaceted part of human life. From clothing to home decoration, from industrial applications to economic impacts, textile products play a significant role in people's daily lives. While garments and accessories reflect forms of personal expression, home textiles beautify living spaces and provide comfort. Additionally, the textile industry creates employment opportunities for millions of people worldwide. The traditional textile sector influences human life culturally, socially, and economically. However, special conditions require special equipment and, consequently, special textiles. In the metal industry, textiles with high heat resistance and flame retardancy, as well as those providing protection against various chemicals in the chemical production sector, require special engineering and manufacturing technologies. Changing living conditions drive people to seek new solutions. In this context, it is inevitable that the textiles used will also change to meet people's evolving needs. Beyond the currently desired features, such as antibacterial properties, resistance to rapid and large temperature fluctuations, and protection against radiation and physical wear, it will be demanded that textiles possess additional features enabled by advancing technology. It is likely that in the future, textiles capable of self-generating the necessary energy while connecting to the Internet of Things (IoT) system and during health monitoring via sensors used to continuously track human health conditions will be utilized. This article examines recent studies on the applications of important nanotechnology in textiles and outlines a roadmap for the future. CR - [1] T. Jeevani, “Nanotextiles- A broader perspective,” Journal of Nanomedicine & Nanotechnology, vol. 2, no. 7, pp. 1–5, 2011. doi:10.4172/2157-7439.1000124 CR - [2] K. P. Chowdhury, M. A. B. H. Susan, and S. Ahmed, “Nanomaterials for multifunctional textiles,” in Emerging Applications of Nanomaterials, Materials Research Foundations, pp. 169–217, 2023. doi:10.21741/9781644902288-8 CR - [3] M. A. Shah, B. M. Pirzada, G. Price, A. L. Shibiru, and A. Qurashi, “Applications of nanotechnology in smart textile industry: A critical review,” Journal of Advanced Research, vol. 38, pp. 55–75, 2022. doi:10.1016/j.jare.2022.01.008 CR - [4] A. K. M. A. Hosne Asif and M. Z. Hasan, “Application of nanotechnology in modern textiles: A review,” International Journal of Current Engineering and Technology, vol. 8, no. 2, pp. 227–231, Jan. 2018. doi:10.14741/ijcet/v.8.2.5 CR - [5] A. A. El-Kheir and L. K. El-Gabry, “Potential applications of nanotechnology in functionalization of synthetic fibres (A review),” Egyptian Journal of Chemistry, vol. 65, no. 9, pp. 67–85, 2022. doi:10.21608/EJCHEM.2022.106369.4891 CR - [6] A. Salman, F. A. Metwally, M. K. El-Bisi, and G. A. M. Emara, “Effect of geometrical yarn parameters: Conventional and compact ring spinning on certain functional properties of tio2nps treated woven cotton fabrics,” Egyptian Journal of Chemistry, vol. 63, no. 5, pp. 1757–1766, 2020. doi:10.21608/ejchem.2019.18226.2113 CR - [7] Y. Wang, S. Lu, J. Zheng, and L. Liang, “Advances in latest application status, challenges, and future development direction of electrospinning technology in the biomedical,” Journal of Nanomaterials, vol. 2022. pp. 1–18, Sep. 2022. doi:10.1155/2022/3791908 CR - [8] C. I. Idumah, “Influence of nanotechnology in polymeric textiles, applications, and fight against COVID-19,” Journal of the Textile Institute, vol. 112, no. 12, pp. 2056–2076, 2021. doi:10.1080/00405000.2020.1858600 CR - [9] R. Mahmud and F. Nabi, “Application of nanotechnology in the field of textile,” IOSR Journal of Polymer and Textile Engineering, vol. 04, no. 01, pp. 01–06, Jan. 2017. doi:10.9790/019X-0401010106 CR - [10] S. Ahmed, M. Ahmad, B. L. Swami, and S. Ikram, “A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise,” Journal of Advanced Research, vol. 7, no. 1, pp. 17–28, 2016. doi:10.1016/j.jare.2015.02.007 CR - [11] S. Shaarawy, “A review on the development of innovative capabilities in the textile finishing of natural fibers,” Egyptian Journal of Chemistry, vol. 62, no. Part 2, pp. 857–879, 2019. doi:10.21608/EJCHEM.2019.19009.2169 CR - [12] L. Hu et al., “Stretchable, porous, and conductive energy textiles,” Nano Letters, vol. 10, no. 2, pp. 708–714, Feb. 2010. doi:10.1021/nl903949m CR - [13] W. Kim, T. Han, Y. Gwon, S. Park, H. Kim, and J. Kim, “Biodegradable and flexible nanoporous films for design and fabrication of active food packaging systems,” Nano Letters, vol. 22, no. 8, pp. 3480–3487, Apr. 2022. doi:10.1021/acs.nanolett.2c00246 CR - [14] H. Saleem and S. J. Zaidi, “Sustainable use of nanomaterials in textiles and their environmental impact,” Materials (Basel)., vol. 13, no. 22, pp. 1–28, 2020. doi:10.3390/ma13225134 CR - [15] M. Naito, T. Yokoyama, K. Hosokawa, and K. Nogi, Eds., “Chapter 1 - Basic Properties and Measuring Methods of Nanoparticles,” in Nanoparticle Technology Handbook (Third Edition), Elsevier, 2018. pp. 3–47. doi:10.1016/B978-0-444-64110-6.00001-9 CR - [16] M. Naito, T. Yokoyama, K. Hosokawa, and K. B. T.-N. T. H. (Third E. Nogi, Eds., “Chapter 2 - Structural Control of Nanoparticles,” Elsevier, 2018. pp. 49–107. doi:10.1016/B978-0-444-64110-6.00002-0 CR - [17] M. Naito, T. Yokoyama, K. Hosokawa, and K. B. T.-N. T. H. (Third E. Nogi, Eds., “Chapter 4 - Control of Nanostructure of Materials,” Elsevier, 2018. pp. 169–253. doi:10.1016/B978-0-444-64110-6.00004-4 CR - [18] R. Mishra et al., “The production, characterization and applications of nanoparticles in the textile industry,” Textile Progress, vol. 46, no. 2, pp. 133–226, 2014. doi:10.1080/00405167.2014.964474 CR - [19] S. Riaz et al., “Functional finishing and coloration of textiles with nanomaterials,” Coloration Technology, vol. 134, no. 5, pp. 327–346, 2018. doi:10.1111/cote.12344 CR - [20] N. Vigneshwaran, “Application of Functional Nanoparticle Finishes on Cotton Textiles,” Trends in Textile Engineering & Fashion Technology, vol. 3, no. 4, pp. 358–362, 2018. doi:10.31031/tteft.2018.03.000568 CR - [21] I. S. Tania, M. Ali, and M. Akter, “Fabrication, characterization, and utilization of ZnO nanoparticles for stain release, bacterial resistance, and UV protection on cotton fabric,” Journal of Engineered Fibers and Fabrics, vol. 17, 2022. doi:10.1177/15589250221136378 CR - [22] W. Raslan, A. El-Halwagy, and H. Elsayad, “Recent Advances in Plasma/Nanoparticles Treatments of Textile Fibers,” Journal of Textiles, Coloration and Polymer Science, vol. 17, no. 2, pp. 87–105, 2020. doi:10.21608/jtcps.2020.33748.1042 CR - [23] I. Safarik et al., “Cotton Textile/Iron Oxide Nanozyme Composites with Peroxidase-like Activity: Preparation, Characterization, and Application,” ACS Applied Materials & Interfaces, vol. 13, no. 20, pp. 23627–23637, May 2021. doi:10.1021/acsami.1c02154 CR - [24] C. K. Kundu, M. T. Hossen, and R. Saha, “Coloration with nanoparticles: Scope for developing simultaneous colouring and functional properties onto textile surfaces—a short review,” Coloration Technology, vol. 138, no. 5, pp. 443–455, 2022. doi:10.1111/cote.12621 CR - [25] S. Currie et al., “Rechargeable Potent Anti-Viral Cotton Grafted with a New Quaternized N-Chloramine,” Advanced Materials Interfaces, vol. 9, no. 35, pp. 1–13, 2022. doi:10.1002/admi.202201338 CR - [26] D. Lee, J. S. Sang, P. J. Yoo, T. J. Shin, K. W. Oh, and J. Park, “Machine-washable smart textiles with photothermal and antibacterial activities from nanocomposite fibers of conjugated polymer nanoparticles and polyacrylonitrile,” Polymers (Basel)., vol. 11, no. 1, 2019. doi:10.3390/polym11010016 CR - [27] A. Yadav et al., “Functional finishing in cotton fabrics using zinc oxide nanoparticles,” Bulletin of Materials Science, vol. 29, no. 6, pp. 641–645, 2006. doi:10.1007/s12034-006-0017-y CR - [28] S. Fateixa, M. Wilhelm, H. I. S. Nogueira, and T. Trindade, “SERS and Raman imaging as a new tool to monitor dyeing on textile fibres,” Journal of Raman Spectroscopy, vol. 47, no. 10, pp. 1239–1246, 2016. doi:10.1002/jrs.4947 CR - [29] N. Vrinceanu, S. Bucur, C. M. Rimbu, S. Neculai-Valeanu, S. Ferrandiz Bou, and M. P. Suchea, “Nanoparticle/biopolymer-based coatings for functionalization of textiles: recent developments (a minireview),” Textile Research Journal, vol. 92, no. 19–20, pp. 3889–3902, 2022. doi:10.1177/00405175211070613 CR - [30] V. Bhandari, S. Jose, P. Badanayak, A. Sankaran, and V. Anandan, “Antimicrobial Finishing of Metals, Metal Oxides, and Metal Composites on Textiles: A Systematic Review,” Industrial & Engineering Chemistry Research, vol. 61, no. 1, pp. 86–101, Jan. 2022. doi:10.1021/acs.iecr.1c04203 CR - [31] M. Yazıcı, Ö. Önal, and O. Konuş, “Graphene Katkılı Sıvılaştırılmış Fındık Kabuğu / Polyvinyl pyrrolidone (PVP) Nanoyüzeylerin Elektrospinning Tekniği ile Elde Edilmesi ve Karakterizasyonu”, Kahramanmaras Sutcu Imam University Journal of Engineering Sciences, vol. 21, no. 3, pp. 184–194, 2018. CR - [32] M. Afshari, “1 - Introduction,” in Woodhead Publishing Series in Textiles, M. B. T.-E. N. Afshari, Ed. Woodhead Publishing, 2017. pp. 1–8. doi:10.1016/B978-0-08-100907-9.00001-5 CR - [33] X. Qin and S. Subianto, “17 - Electrospun nanofibers for filtration applications,” in Woodhead Publishing Series in Textiles, M. B. T.-E. N. Afshari, Ed. Woodhead Publishing, 2017. pp. 449–466. doi:10.1016/B978-0-08-100907-9.00017-9 CR - [34] T. R. Hayes and B. Su, “15 - Wound dressings,” in Woodhead Publishing Series in Biomaterials, L. A. Bosworth and S. B. T.-E. for T. R. Downes, Eds. Woodhead Publishing, 2011. pp. 317–339. doi:10.1533/9780857092915.2.317 CR - [35] R. Bagherzadeh, M. Gorji, M. S. Sorayani Bafgi, and N. Saveh-Shemshaki, “18 - Electrospun conductive nanofibers for electronics,” in Woodhead Publishing Series in Textiles, M. B. T.-E. N. Afshari, Ed. Woodhead Publishing, 2017. pp. 467–519. doi:10.1016/B978-0-08-100907-9.00018-0 CR - [36] S. Siengchin, “A review on lightweight materials for defence applications: Present and future developments,” Defence Technology, vol. 24, pp. 1–17, 2023. doi:10.1016/j.dt.2023.02.025 CR - [37] C. J. Luo, S. D. Stoyanov, E. Stride, E. Pelan, and M. Edirisinghe, “Electrospinning versus fibre production methods: from specifics to technological convergence,” Chemical Society Reviews, vol. 41, no. 13, pp. 4708–4735, 2012. doi:10.1039/C2CS35083A CR - [38] P. A. Mouthuy, N. Zargar, O. Hakimi, E. Lostis, and A. Carr, “Fabrication of continuous electrospun filaments with potential for use as medical fibres,” Biofabrication, vol. 7, no. 2, 2015. doi:10.1088/1758-5090/7/2/025006 CR - [39] A. Sattar, A. Khatri, S. Ali, and F. Ahmed, “Digital ink-jet printing of regenerated cellulose nanofibrous mats with reactive inks,” Coloration Technology, vol. 140, no. 2, pp. 279–286, 2024. doi:1111/cote.12713 CR - [40] R. E. Neisiany, S. N. Khorasani, M. Naeimirad, J. K. Y. Lee, and S. Ramakrishna, “Improving Mechanical Properties of Carbon/Epoxy Composite by Incorporating Functionalized Electrospun Polyacrylonitrile Nanofibers,” Macromolecular Materials and Engineering, vol. 302, no. 5, pp. 1–11, 2017. doi:10.1002/mame.201600551 CR - [41] K. Abe and H. Yano, “Cellulose nanofiber-based hydrogels with high mechanical strength,” Cellulose, vol. 19, no. 6, pp. 1907–1912, 2012. doi:10.1007/s10570-012-9784-3 CR - [42] V. Beachley and X. Wen, “Fabrication of nanofiber reinforced protein structures for tissue engineering,” Materials Science and Engineering C, vol. 29, no. 8, pp. 2448–2453, 2009. doi:10.1016/j.msec.2009.07.008 CR - [43] X. Li et al., “Resin composites reinforced by nanoscaled fibers or tubes for dental regeneration,” BioMed Research International, vol. 2014. 2014. doi:10.1155/2014/542958 CR - [44] V. M. Merkle, L. Zeng, M. J. Slepian, and X. Wu, “Core-shell nanofibers: Integrating the bioactivity of gelatin and the mechanical property of polyvinyl alcohol,” Biopolymers, vol. 101, no. 4, pp. 336–346, 2014. doi:10.1002/bip.22367 CR - [45] K. Abe, S. Ifuku, M. Kawata, and H. Yano, “Preparation of tough hydrogels based on β-chitin nanofibers via NaOH treatment,” Cellulose, vol. 21, no. 1, pp. 535–540, 2014. doi:10.1007/s10570-013-0095-0 CR - [46] Z. Kaya, E. Balcioglu, and H. Gün, “Fiber Takviyeli Kompozitlerin Farklı Deformasyon Hızındaki Mod I ve Mod I/II Kırılma Davranışların İncelenmesi,” Politeknik Dergisi, vol. 25, no. 2, pp. 843–853, 2022. doi:10.2339/politeknik.707130 CR - [47] B. Ergene, “Simulation of the production of Inconel 718 and Ti6Al4V biomedical parts with different relative densities by selective laser melting (SLM) method,” Journal of the Faculty of Engineering and Architecture of Gazi University, vol. 37, no. 1, pp. 469–484, 2022. doi:10.17341/GAZIMMFD.934143 CR - [48] A. Çosgun and G. Yilmaz, “Damla Döküm Yöntemi ile Üretilen Perovskit Filmlerin Yaşlanma Süreçlerinin Elektriksel Karakterizasyon Teknikleri ile Belirlenmesi,” Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, vol. 17, no. 1, pp. 44–54, 2022. doi:10.29233/sdufeffd.992932 CR - [49] H. İ. Yavuz and R. Yamanoglu, “β Tipi Ti Alaşımlarının Özellikleri Üzerine Bir Derleme: Mikroyapı, Mekanik, Korozyon Özellikleri ve Üretim Yöntemleri,” Politeknik Dergisi, vol. 26, no. 4, pp. 1601–1620, 2023. doi:10.2339/politeknik.987216 CR - [50] G. Sadullahoğlu, “Production and Characterization of B2O3 Added M-Type Barium Hexaferrite Composite Magnet,” Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi, vol. 13, no. 2 pp. 382-389, 2021. doi:10.29137/umagd.737894 CR - [51] N. Taş and F. Egilmez, “İmplant Destekli Hibrit Protezlerin Yapımında Kullanılan Materyaller ve Üretim Yöntemleri,” Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, pp. 1–1, 2021. doi:10.17567/ataunidfd.757321 CR - [52] Y. C. Toklu, A. E. Çercevik, and M. Şahinöz, “Otomatik Yapı Üretim Teknolojisinde Kullanılabilecek Malzemelerin Belirlenmesi,” Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 21, no. 1, p. 51, 2016. doi:10.19113/sdufbed.73967 CR - [53] Ş. Kılıncarslan and Y. Şimsek Türker, “Ahşap Malzemelerin FRP ile Güçlendirilmesinin Sürdürülebilirlik Açısından Değerlendirilmesi,” Teknik Bilimler Dergisi, vol. 10, no. 1, pp. 23–30, 2020. doi:10.35354/tbed.615101 CR - [54] K. Al and E. Bayrakdar Ates, “Sustainable Hydrogen Production Technologies: Biomass Based Approaches,” Bartın University International Journal of Natural and Applied Sciences, vol. 5, no. 1, pp. 18–37, 2022. doi:10.55930/jonas.1101384 CR - [55] B. Karagüzel Kayaoǧlu, I. Göcek, H. Kizil, and L. Trabzon, “Functional nano and micro-scale thin film deposition on textiles: Emerging technologies and applications,” Journal of Textile Engineering, vol. 19, no. 88, pp. 39–47, 2012. doi:10.7216/130075992012198805 CR - [56] K. Müller et al., “Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging, automotive and solar energy fields,” Nanomaterials, vol. 7, no. 4, 2017. doi:10.3390/nano7040074 CR - [57] Ngakan Putu Gede Satria Kesumayasa, Suriati, and Rudianta, “Physicochemical Properties of Porang Nanocoating with the Addition of Essential Oils,” Sustainable Environment Agricultural Science, vol. 7, no. 2, pp. 130–138, 2023. doi:10.22225/seas.7.2.6842.130-138 CR - [58] K. Willems, P. Lauweryns, G. Verleye, and J. Van Goethem, “Randomized controlled trial of posterior lumbar interbody fusion with Ti- And cap-nanocoated polyetheretherketone cages: Comparative study of the 1-year radiological and clinical outcome,” International Journal of Spine Surgery, vol. 13, no. 6, pp. 575–587, 2019. doi:10.14444/6080 CR - [59] I. Dominguez, I. Del Villar, O. Fuentes, J. M. Corres, and I. R. Matias, “Interdigital concept in photonic sensors based on an array of lossy mode resonances,” Scientific Reports, vol. 11, no. 1, pp. 1–11, 2021. doi:10.1038/s41598-021-92765-0 CR - [60] T. Phan, J. E. Jones, M. Chen, D. K. Bowles, W. P. Fay, and Q. Yu, “A Biocompatibility Study of Plasma Nanocoatings onto Cobalt Chromium L605 Alloy for Cardiovascular Stent Applications,” Materials (Basel)., vol. 15, no. 17, 2022. doi:10.3390/ma15175968 CR - [61] M. I. Abdulraheem, A. Y. Moshood, Y. Chen, H. Chen, H. Zhang, and J. Hu, “Advancements in Designing Smart and Intelligent Nanocoatings,” in Sustainable Approach to Protective Nanocoatings, 2024. pp. 57–87doi:10.4018/979-8-3693-3136-1.ch003 CR - [62] A. Thakur and A. Kumar, “Chapter 19 - Self-healing nanocoatings for automotive application,” in Micro and Nano Technologies, H. Song, T. A. Nguyen, G. Yasin, N. B. Singh, and R. K. B. T.-N. in the A. I. Gupta, Eds. Elsevier, 2022. pp. 403–427. doi:10.1016/B978-0-323-90524-4.00019-0 CR - [63] E. Pakdel, J. Fang, J. Fang, L. Sun, X. Wang, and X. Wang, “Nanocoatings for Smart Textiles,” in Smart Textiles, 2018. pp. 247–300. doi:10.1002/9781119460367.ch8. CR - [64] T. I. Shaheen, “Nanotechnology for modern textiles: highlights on smart applications,” Journal of the Textile Institute, vol. 113, no. 10, pp. 2274–2284, 2021. doi:10.1080/00405000.2021.1962625 CR - [65] M. Zayed, M. Bakr, and H. Ghazal, “Recent developments in the utilization of polymer nanocomposites in textile applications,” Journal of Textiles, Coloration and Polymer Science, vol. 0, no. 0, pp. 0–0, 2023. doi:10.21608/jtcps.2023.193744.1172 CR - [66] S. Gowri, L. Almeida, T. Amorim, N. Carneiro, A. Pedro Souto, and M. Fátima Esteves, “Polymer Nanocomposites for Multifunctional Finishing of Textiles - a Review,” Textile Research Journal, vol. 80, no. 13, pp. 1290–1306, Mar. 2010. doi:10.1177/0040517509357652 CR - [67] S. Gowri, M. A. Khan, and A. K. Srivastava, “Textile finishing using polymer nanocomposites for radiation shielding, flame retardancy and mechanical strength,” Textile & Leather Review, vol. 4, no. 3, pp. 160–180, 2021. doi:10.31881/TLR.2021.07 CR - [68] J. Bouchard, A. Cayla, V. Lutz, C. Campagne, and E. Devaux, “Electrical and mechanical properties of phenoxy/multiwalled carbon nanotubes multifilament yarn processed by melt spinning,” Textile Research Journal, vol. 82, no. 20, pp. 2106–2115, 2012. doi:10.1177/0040517512450760 CR - [69] S. Yao, P. Swetha, and Y. Zhu, “Nanomaterial-Enabled Wearable Sensors for Healthcare,” Advanced Healthcare Materials, vol. 7, no. 1, pp. 1–27, 2018. doi:10.1002/adhm.201700889 CR - [70] S. Parham et al., “Textile/Al2O3–TiO2 nanocomposite as an antimicrobial and radical scavenger wound dressing,” RSC Advances, vol. 6, no. 10, pp. 8188–8197, 2016. doi:10.1039/C5RA20361A CR - [71] L. Noureen et al., “Multifunctional Ag3PO4-rGO-Coated Textiles for Clean Water Production by Solar-Driven Evaporation, Photocatalysis, and Disinfection,” ACS Applied Materials & Interfaces, vol. 12, no. 5, pp. 6343–6350, Feb. 2020. doi:10.121/acsami.9b16043 CR - [72] V. T. Novi, A. Gonzalez, J. Brockgreitens, and A. Abbas, “Highly efficient and durable antimicrobial nanocomposite textiles,” Scientific Reports, vol. 12, no. 1, pp. 1–9, 2022. doi:10.1038/s41598-022-22370-2 CR - [73] D. C. Çelikel, “Smart E-Textile Materials,” in Advanced Functional Materials, N. Tasaltin, P. S. Nnamchi, and S. Saud, Eds. Rijeka: IntechOpen, 2020. doi:10.5772/intechopen.92439 CR - [74] N. K. Persson, J. G. Martinez, Y. Zhong, A. Maziz, and E. W. H. Jager, “Actuating Textiles: Next Generation of Smart Textiles,” Advanced Materials Technologies, vol. 3, no. 10, pp. 1–12, 2018. doi:10.1002/admt.201700397 CR - [75] N. Y. Abu-Thabit, “Chemical Oxidative Polymerization of Polyaniline: A Practical Approach for Preparation of Smart Conductive Textiles,” Journal of Chemical Education, vol. 93, no. 9, pp. 1606–1611, Sep. 2016. doi:10.1021/acs.jchemed.6b00060 CR - [76] A. M. Grancarić, I. Jerković, V. Koncar, C. Cochrane, F. M. Kelly, D. Soulat, X. Legrand, Conductive polymers for smart textile applications, Journal of Industrial Textiles, vol. 48, no. 3. 2018. doi:10.1177/1528083717699368 CR - [77] K. Cherenack, C. Zysset, T. Kinkeldei, N. Münzenrieder, and G. Tröster, “Woven electronic fibers with sensing and display functions for smart textiles,” Advanced Materials, vol. 22, no. 45, pp. 5178–5182, 2010. doi:10.1002/adma.201002159 CR - [78] B. Younes, “Smart E-textiles: A review of their aspects and applications,” Journal of Industrial Textiles, vol. 53, pp. 1–23, 2023. doi:10.1177/15280837231215493 CR - [79] A. Salman, F. A. Metwally, M. Elbisi, and G. A. M. Emara, “Applications of nanotechnology and advancements in smart wearable textiles: An overview,” Egyptian Journal of Chemistry, vol. 63, no. 6, pp. 2177–2184, 2020. doi:10.21608/ejchem.2019.18223.2112 CR - [80] S. H. W. Ossevoort, “14 - Improving the sustainability of smart textiles,” in Multidisciplinary Know-How for Smart-Textiles Developers, T. Kirstein, Ed. Woodhead Publishing, 2013. pp. 399–419. doi:10.1533/9780857093530.3.399 CR - [81] K. Cherenack and L. van Pieterson, “Smart textiles: Challenges and opportunities,” Journal of Applied Physics, vol. 112, no. 9, p. 91301, 2012. doi:10.1063/1.4742728 CR - [82] E. Özdoğan, A. Demir, and N. Seventekin, “Nanoteknoloji ve tekstil uygulamaları,” Tekstil ve Konfeksiyon, vol. 3, pp. 159–168, 2006. CR - [83] L.-P. Yu, C.-Y. Xing, S.-T. Fan, F. Liu, B.-J. Li, and S. Zhang, “β-Cyclodextrin-Modified Polyacrylonitrile Nanofibrous Scaffolds with Breathability, Moisture-Wicking, and Antistatic Performance,” Industrial & Engineering Chemistry Research, vol. 60, no. 28, pp. 10217–10224, Jul. 2021. doi:10.1021/acs.iecr.1c01744 CR - [84] H. J. Choi, M. S. Kim, D. Ahn, S. Y. Yeo, and S. Lee, “Electrical percolation threshold of carbon black in a polymer matrix and its application to antistatic fibre,” Scientific Reports, vol. 9, no. 1, pp. 1–12, 2019. doi:10.1038/s41598-019-42495-1 CR - [85] S. Jose, N. Shanmugam, S. Das, A. Kumar, and P. Pandit, “Coating of lightweight wool fabric with nano clay for fire retardancy,” Journal of the Textile Institute, vol. 110, no. 5, pp. 764–770, 2019. doi:10.1080/00405000.2018.1516529 CR - [86] J. Chen et al., “Preparation of biocl/bi2wo6 photocatalyst for efficient fixation on cotton fabric: Applications in uv shielding and self-cleaning performances,” Materials (Basel)., vol. 14, no. 22, 2021. doi:10.3390/ma14227002 CR - [87] K. Qi, W. A. Daoud, J. H. Xin, C. L. Mak, W. Tang, and W. P. Cheung, “Self-cleaning cotton,” Journal of Materials Chemistry, vol. 16, no. 47, pp. 4567–4574, 2006. doi:10.1039/B610861J CR - [88] M. A. Tănase et al., “Facile in situ synthesis of zno flower-like hierarchical nanostructures by the microwave irradiation method for multifunctional textile coatings,” Nanomaterials, vol. 11, no. 10, 2021. doi:10.3390/nano11102574 CR - [89] R. Dastjerdi and M. Montazer, “A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties,” Colloids Surfaces B Biointerfaces, vol. 79, no. 1, pp. 5–18, 2010. doi:10.1016/j.colsurfb.2010.03.029 CR - [90] H. F. Moafi, A. F. Shojaie, and M. A. Zanjanchi, “Semiconductor-Assisted Self-Cleaning Polymeric Fibers Based on Zinc Oxide Nanoparticles,” Journal of Applied Polymer Science, vol. 121, no. 6, pp. 3111–3732, 2011. doi: 10.1002/app.34179 CR - [91] H. Wang, Y. Hu, L. Zhang, and C. Li, “Self-Cleaning Films with High Transparency Based on TiO2 Nanoparticles Synthesized via Flame Combustion,” Industrial & Engineering Chemistry Research, vol. 49, no. 8, pp. 3654–3662, Apr. 2010. doi:10.1021/ie901782w CR - [92] B. K. Tudu, A. Kumar, and B. Bhushan, “Fabrication of superoleophobic cotton fabric for multi-purpose applications,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 377, no. 2150, pp. 1–13, 2019. doi:10.1098/rsta.2019.0129 CR - [93] Z. Geng et al., “High-performance TiO2 nanotubes/poly(aryl ether sulfone) hybrid self-cleaning anti-fouling ultrafiltration membranes,” Polymers (Basel)., vol. 11, no. 3, 2019. doi:10.3390/polym11030555 CR - [94] G. Zhang, D. Wang, J. Yan, Y. Xiao, W. Gu, and C. Zang, “Study on the photocatalytic and antibacterial properties of TiO2 nanoparticles-coated cotton fabrics,” Materials (Basel)., vol. 12, no. 12, 2019. doi:10.3390/ma12122010 CR - [95] M. J. Uddin et al., “Cotton textile fibres coated by Au/TiO2 films: Synthesis, characterization and self cleaning properties,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 199, no. 1, pp. 64–72, 2008, doi:10.1016/j.jphotochem.2008.05.004 CR - [96] S. Naderizadeh et al., “Superhydrophobic Coatings from Beeswax-in-Water Emulsions with Latent Heat Storage Capability,” Advanced Materials Interfaces, vol. 6, no. 5, pp. 1–11, 2019. doi:10.1002/admi.201801782 CR - [97] M. Yu, G. Gu, W. D. Meng, and F. L. Qing, “Superhydrophobic cotton fabric coating based on a complex layer of silica nanoparticles and perfluorooctylated quaternary ammonium silane coupling agent,” Applied Surface Science, vol. 253, no. 7, pp. 3669–3673, 2007. doi:10.1016/j.apsusc.2006.07.086 CR - [98] A. Synytska, R. Khanum, L. Ionov, C. Cherif, and C. Bellmann, “Water-Repellent Textile via Decorating Fibers with Amphiphilic Janus Particles,” ACS Applied Materials & Interfaces, vol. 3, no. 4, pp. 1216–1220, Apr. 2011. doi:10.1021/am200033u CR - [99] F. Shams-Ghahfarokhi, A. Khoddami, Z. Mazrouei-Sebdani, J. Rahmatinejad, and H. Mohammadi, “A new technique to prepare a hydrophobic and thermal insulating polyester woven fabric using electro-spraying of nano-porous silica powder,” Surface and Coatings Technology, vol. 366, no. October 2018. pp. 97–105, 2019. doi:10.1016/j.surfcoat.2019.03.025 CR - [100] Y. Chen, J. Fu, B. Dang, Q. Sun, H. Li, and T. Zhai, “Artificial Wooden Nacre: A High Specific Strength Engineering Material,” ACS Nano, vol. 14, no. 2, pp. 2036–2043, Feb. 2020. doi:10.1021/acsnano.9b08647 CR - [101] H. P. Aravind, S. A. Jadhav, V. B. More, K. D. Sonawane, and P. S. Patil, “Novel One Step Sonosynthesis and Deposition Technique to Prepare Silver Nanoparticles Coated Cotton Textile with Antibacterial Properties,” Colloid Journal, vol. 81, no. 6, pp. 720–727, 2019. doi:10.1134/S1061933X19070019 CR - [102] S. Wirunchit, N. Wonganan, and W. Koetniyom, “Multi Self-cleaning Properties of Zinc Oxide Nanoparticles/ Polydimethylsiloxane (ZnO/PDMS) Composite on Polyester Textile,” Current Applied Science and Technology, vol. 23, no. 5, pp. 1–12, 2023. doi:10.55003/cast.2023.05.23.015 CR - [103] M. Salat, P. Petkova, J. Hoyo, I. Perelshtein, A. Gedanken, and T. Tzanov, “Durable antimicrobial cotton textiles coated sonochemically with ZnO nanoparticles embedded in an in-situ enzymatically generated bioadhesive,” Carbohydrate Polymers, vol. 189, no. February, pp. 198–203, 2018. doi:10.1016/j.carbpol.2018.02.033 CR - [104] S. Mondal, “Nanomaterials for UV protective textiles,” Journal of Industrial Textiles, vol. 51, no. 4, pp. 5592S-5621S, 2022. doi:10.1177/1528083721988949. CR - [105] D. Mihailović et al., “Multifunctional properties of polyester fabrics modified by corona discharge/air RF plasma and colloidal TiO2 nanoparticles,” Polymer Composites, vol. 32, no. 3, pp. 390–397, 2011. doi: 10.1002/pc.21053 CR - [106] Z. Wang, M. Xue, K. Huang, and Z. Liu, “Textile Dyeing Wastewater Treatment,” Advances in Treating Textile Effluent, 2011. doi:10.5772/22670 CR - [107] J. Yu et al., “Cotton fabric finished by PANI/TiO 2 with multifunctions of conductivity, anti-ultraviolet and photocatalysis activity,” Applied Surface Science, vol. 470, no. July 2018. pp. 84–90, 2019. doi:10.1016/j.apsusc.2018.11.112 CR - [108] N. R. Dhineshbabu and S. Bose, “UV resistant and fire retardant properties in fabrics coated with polymer based nanocomposites derived from sustainable and natural resources for protective clothing application,” Composites Part B: Engineering, vol. 172, no. February, pp. 555–563, 2019. doi:10.1016/j.compositesb.2019.05.013 CR - [109] S. Xi, L. Wang, H. Xie, and W. Yu, “Superhydrophilic Modified Elastomeric RGO Aerogel Based Hydrated Salt Phase Change Materials for Effective Solar Thermal Conversion and Storage,” ACS Nano, vol. 16, no. 3, pp. 3843–3851, 2022. doi:10.1021/acsnano.1c08581 CR - [110] J. Wu et al., “A Trimode Thermoregulatory Flexible Fibrous Membrane Designed with Hierarchical Core–Sheath Fiber Structure for Wearable Personal Thermal Management,” ACS Nano, vol. 16, no. 8, pp. 12801–12812, Aug. 2022. doi:10.1021/acsnano.2c04971 CR - [111] J. Cui et al., “Ultra-Stable Phase Change Coatings by Self-Cross-Linkable Reactive Poly(ethylene glycol) and MWCNTs,” Advanced Functional Materials, vol. 32, no. 10, pp. 1–10, 2022. doi:10.1002/adfm.202108000 CR - [112] M. A. Ali, A. G. Hassabo, K. M. Seddik, S. Y. M. Gad, and N. M. Aly, “Characterization of the Thermal and Physico-Mechanical Properties of Cotton and Polyester Yarns Treated with Phase Change Materials Composites,” Egyptian Journal of Chemistry, vol. 65, no. 13, pp. 21–37, 2022. doi:10.21608/EJCHEM.2022.143640.6270 CR - [113] C. Cherif, N. H. A. Tran, M. Kirsten, H. Brünig, and R. Vogel, “Environmentally friendly and highly productive bi-component melt spinning of thermoregulated smart polymer fibres with high latent heat capacity,” Express Polymer Letters, vol. 12, no. 3, pp. 203–214, 2018. doi:10.3144/expresspolymlett.2018.19 CR - [114] V. Skurkyte-Papieviene, A. Abraitiene, A. Sankauskaite, V. Rubeziene, and J. Baltusnikaite-Guzaitiene, “Enhancement of the thermal performance of the paraffin-based microcapsules intended for textile applications,” Polymers (Basel)., vol. 13, no. 7, pp. 1–16, 2021. doi:10.3390/polym13071120 CR - [115] M. A. Ali, A. G. Hassabo, K. M. Seddik, sarah yahia, and N. M. Aly, “Characterization of the Thermal and Physico-Mechanical Properties of Cotton and Polyester Yarns Treated with Phase Change Materials Composites,” Egyptian Journal of Chemistry, vol. 65, no. 131, pp. 21–37, 2022. doi:10.21608/ejchem.2022.143640.6270 CR - [116] T. Textor and B. Mahltig, “A sol-gel based surface treatment for preparation of water repellent antistatic textiles,” Applied Surface Science, vol. 256, no. 6, pp. 1668–1674, 2010. doi:10.1016/j.apsusc.2009.09.091 CR - [117] E. Samuel, B. Joshi, M. W. Kim, Y. Il Kim, M. T. Swihart, and S. S. Yoon, “Hierarchical zeolitic imidazolate framework-derived manganese-doped zinc oxide decorated carbon nanofiber electrodes for high performance flexible supercapacitors,” Chemical Engineering Journal, vol. 371, no. February, pp. 657–665, 2019. doi:10.1016/j.cej.2019.04.065 CR - [118] N. Nan et al., “A Stretchable, Highly Sensitive, and Multimodal Mechanical Fabric Sensor Based on Electrospun Conductive Nanofiber Yarn for Wearable Electronics,” Advanced Materials Technologies, vol. 4, no. 3, pp. 1–11, 2019. doi:10.1002/admt.201800338 CR - [119] Y. Huang et al., “From Industrially Weavable and Knittable Highly Conductive Yarns to Large Wearable Energy Storage Textiles,” ACS Nano, vol. 9, no. 5, pp. 4766–4775, May 2015. doi:10.1021/acsnano.5b00860 CR - [120] Y. Huang et al., “Magnetic-Assisted, Self-Healable, Yarn-Based Supercapacitor,” ACS Nano, vol. 9, no. 6, pp. 6242–6251, Jun. 2015. doi:10.1021/acsnano.5b01602 CR - [121] H. Qu, O. Semenikhin, and M. Skorobogatiy, “Flexible fiber batteries for applications in smart textiles,” Smart Materials and Structures, vol. 24, no. 2, p. 25012, 2014. doi:10.1088/0964-1726/24/2/025012 CR - [122] Y. Liu, S. Gorgutsa, C. Santato, and M. Skorobogatiy, “ Flexible, Solid Electrolyte-Based Lithium Battery Composed of LiFePO 4 Cathode and Li 4 Ti 5 O 12 Anode for Applications in Smart Textiles ,” Journal of The Electrochemical Society, vol. 159, no. 4, pp. A349–A356, 2012. doi:10.1149/2.020204jes CR - [123] W. Kim et al., “Soft fabric-based flexible organic light-emitting diodes,” Organic Electronics, vol. 14, no. 11, pp. 3007–3013, 2013. doi:10.1016/j.orgel.2013.09.001 CR - [124] S. Choi et al., “Multi-directionally wrinkle-able textile OLEDs for clothing-type displays,” npj Flexible Electronics, vol. 4, no. 1, p. 33, Nov. 2020. doi:10.1038/s41528-020-00096-3 CR - [125] Q. Zhao, A. K. Yetisen, A. Sabouri, S. H. Yun, and H. Butt, “Printable Nanophotonic Devices via Holographic Laser Ablation,” ACS Nano, vol. 9, no. 9, pp. 9062–9069, Sep. 2015. doi:10.1021/acsnano.5b03165 CR - [126] M. Liao et al., “Multicolor, Fluorescent Supercapacitor Fiber,” Small, vol. 14, no. 43, pp. 1–6, 2018. doi:10.1002/smll.201702052 CR - [127] I. Sayed, J. Berzowska, and M. Skorobogatiy, “Jacquard-Woven Photonic Bandgap Fiber Displays,” Research Journal of Textile and Apparel, vol. 14, no. 4, pp. 97–105, 2010. doi:10.1108/RJTA-14-04-2010-B011 CR - [128] M. Wasim, M. R. Khan, M. Mushtaq, and A. Naeem, “Surface Modification of Bacterial Cellulose by Copper and Zinc Oxide Sputter Coating for UV-Resistance/Antistatic/Antibacterial Characteristics,” Coatings, vol. 10, no. 4, pp. 364, 2020. doi:10.3390/coatings10040364 CR - [129] S. W. Chen et al., “An Ultrathin Flexible Single-Electrode Triboelectric-Nanogenerator for Mechanical Energy Harvesting and Instantaneous Force Sensing,” Advanced Energy Materials, vol. 7, no. 1, 2017. doi:10.1002/aenm.201601255 CR - [130] M. Xu et al., “A Soft and Robust Spring Based Triboelectric Nanogenerator for Harvesting Arbitrary Directional Vibration Energy and Self-Powered Vibration Sensing,” Advanced Energy Materials, vol. 8, no. 9, pp. 1–9, 2018. doi:10.1002/aenm.201702432 CR - [131] Y. Zhang et al., “Performance Enhancement of Flexible Piezoelectric Nanogenerator via Doping and Rational 3D Structure Design For Self-Powered Mechanosensational System,” Advanced Functional Materials, vol. 29, no. 42, pp. 1–12, 2019. doi:10.1002/adfm.201904259 CR - [132] J. H. Lee et al., “Micropatterned P(VDF-TrFE) film-based piezoelectric nanogenerators for highly sensitive self-powered pressure sensors,” Advanced Functional Materials, vol. 25, no. 21, pp. 3203–3209, 2015. doi:10.1002/adfm.201500856 CR - [133] C. H. Kwon et al., “High-power biofuel cell textiles from woven biscrolled carbon nanotube yarns,” Nature Communications, vol. 5, pp. 1–7, 2014. doi:10.1038/ncomms4928 CR - [134] C. Kwon et al., “High-power hybrid biofuel cells using layer-by-layer assembled glucose oxidase-coated metallic cotton fibers,” Nature Communications, vol. 9, no. 1, p. 4479, Oct. 2018. doi:10.1038/s41467-018-06994-5 CR - [135] S. Ortelli, G. Malucelli, M. Blosi, I. Zanoni, and A. L. Costa, “NanoTiO 2 @DNA complex: a novel eco, durable, fire retardant design strategy for cotton textiles,” Journal of Colloid and Interface Science, vol. 546, pp. 174–183, 2019. doi:10.1016/j.jcis.2019.03.055 CR - [136] B. Mirani et al., “Facile Method for Fabrication of Meter-Long Multifunctional Hydrogel Fibers with Controllable Biophysical and Biochemical Features,” ACS Applied Materials & Interfaces, vol. 12, no. 8, pp. 9080–9089, Feb. 2020. doi:10.1021/acsami.9b23063 CR - [137] V. Kumar, P. Pallavi, S. K. Sen, and S. Raut, “Harnessing the potential of white rot fungi and ligninolytic enzymes for efficient textile dye degradation: A comprehensive review,” Water Environment Research, vol. 96, no. 1, pp. 1–23, 2024. doi:10.1002/wer.10959 CR - [138] Y. Song, Y. Meng, K. Huo, Z.-Q. Wang, Y. Li, M. Yu, B. Zhang, J. Li “Greenly and Efficiently Dyeing Cotton Fabric with Custom-Tailored Reactive Dyes via Electron Beam Irradiation,” ACS Sustainable Chemistry & Engineering, vol. 12, no. 8, pp. 3121–3129, 2024. doi:10.1021/acssuschemeng.3c07075 CR - [139] G. Varadarajan and P. Venkatachalam, “Sustainable textile dyeing processes,” Environmental Chemistry Letters, vol. 14, no. 1, pp. 113–122, 2016. doi:10.1007/s10311-015-0533-3 CR - [140] H. Mamane, S. Altshuler, E. Sterenzon, and V. K. Vadivel, “Decolorization of dyes from textile wastewater using biochar: A review,” Acta Innovations, no. 37, pp. 36–46, 2020. doi:10.32933/ActaInnovations.37.3 CR - [141] S. Yadav, S. Punia, H. R. Sharma, and A. Gupta, “Nano-remediation for the decolourisation of textile effluents: A review,” Nanofabrication, vol. 7, no. 217, pp. 217–243, 2022. doi:10.37819/nanofab.007.226 CR - [142] M. Jiang, K. Ye, J. Deng, J. Lin, W. Ye, S. Zhao, and B. Van der Bruggen “Conventional Ultrafiltration As Effective Strategy for Dye/Salt Fractionation in Textile Wastewater Treatment,” Environmental Science & Technology, vol. 52, no. 18, pp. 10698–10708, Sep. 2018. doi:10.1021/acs.est.8b02984 CR - [143] G. Weber, H. L. Chen, E. Hinsch, S. Freitas, and S. Robinson, “Pigments extracted from the wood-staining fungi Chlorociboria aeruginosa, Scytalidium cuboideum, and S. ganodermophthorum show potential for use as textile dyes,” Coloration Technology, vol. 130, no. 6, pp. 445–452, 2014. doi:10.1111/cote.12110 CR - [144] D. Tatman and G. Karakan Günaydin, “Natural Dyeing of Buldan Handwoven Fabrics With Plant Shell Extracts: a Step Towards Sustainable Textile,” Muğla Journal of Science and Technology, vol. 7, no. 1, pp. 127–136, 2021. doi:10.22531/muglajsci.886688 CR - [145] H. M. Ahmed, M. M. Abdellatif, S. Ibrahim, and F. H. H. Abdellatif, “Mini-emulsified Copolymer/Silica nanocomposite as effective binder and self-cleaning for textiles coating,” Progress in Organic Coatings, vol. 129, no. October 2018. pp. 52–58, 2019. doi:10.1016/j.porgcoat.2019.01.002 UR - https://dergipark.org.tr/en/pub/gmbd/issue//1533898 L1 - https://dergipark.org.tr/en/download/article-file/4148041 ER -