TY - JOUR T1 - Action of Crossed Modules and Bar Construction AU - Ceyran, Emrah AU - Ulualan, Erdal PY - 2025 DA - July Y2 - 2024 DO - 10.54286/ikjm.1536223 JF - Ikonion Journal of Mathematics JO - ikjm PB - Nihat AKGÜNEŞ WT - DergiPark SN - 2687-6531 SP - 49 EP - 61 VL - 7 IS - 1 LA - en AB - If a group $N$ acts on a set $X$, a simplicial set $Bar(X,N)$ using the usual bar construction has been provided. In this construction, if the group $N$ acts on a group $G$ via a homomorphism $f:N\rightarrow G$, then $Bar(G,N)$ has a simplicial set structure. In the case of $f$ has a crossed module structure, $Bar(G,N)$ has a normal simplicial group structure. In this work, by defining an action of a crossed module $\partial: N_1 \longrightarrow X_1$ on a homomorphism of groups $f: N_2 \longrightarrow X_2 $ via a double map $\alpha: \partial\rightarrow f$, we will construct a bisimplicial set, using the 2-dimensional version of the usual Bar construction. KW - Bar construction KW - (Bi)implicial sets KW - Crossed modules KW - Moore complex. CR - Z. ARVASI and T. PORTER, Freeness conditions for 2-crossed module of commutative algebras, Applied Categorical Structures, 6, (1998), 455-477. CR - P. CARRASCO and A.M. CEGARRA, Group-theoretic algebraic models for homotopy types, Journal of Pure and Applied Algebra, 75, (1991), 195-235. CR - D. CONDUCHÉ, Modules croisés généralisés de longueur 2. Jour. Pure and Applied Algebra, 34, (1984), 155-178. CR - J. DUSKIN, Simplicials methods and the interpretation of triple cohomology, Memoirs A.M.S., Vol.3, (1975), 163. CR - G.J. ELLIS, Higher dimensional crossed modules of algebras, Journal of Pure and Applied Algebra, 52, (1988), 277-282. CR - E. D. FARJOUN and Y. SEGEV, Crossed modules as homotopy normal maps, Topology and its Applications, 157, (2010), 359-368. CR - T. PORTER, Homology of commutative algebras and an invariant of Simis and Vasconceles, Journal of Algebra , 99, (1986), 458-465. CR - T. PORTER The Crossed Menagerie: an introduction to crossed gadgetry and co-homology in algebra and topology, (2011), (available from the n-Lab, http://ncatlab.org/nlab/show/Menagerie). CR - W. DWYER and E.D. FARJOUN, The localization and cellularization of principal fibrations, Alpine perspectives on algebraic topology, 117-124, Contemp. Math., 504, Amer. Math. Soc., Providence, RI, 2009, available from http://www3.nd.edu/~wgd/drafts/cellular.pdf CR - L.ILLUSIE, Complex cotangent et deformations I, II. Springer Lecture Notes in Math., 239 (1971), II: 283, (1972). CR - M. PREZMA, Homotopy normal maps, http://arxiv.org/pdf/1011.4708v7.pdf, 2012. CR - D. GUIN-WALÉRY and J-L. LODAY, Obsructioná l’excision en K-theories algébrique, In: Friedlander, E.M.,Stein, M.R.(eds.) Evanston conf. on algebraic K-Theory 1980, (Lect. Notes Math., vol.854, pp 179- 216), Berlin Heidelberg New York: Springer (1981). CR - J.H.C. WHITEHEAD, Combinatorial homotopy , Bull. Amer. Math. Soc., 55, (1949), 453-496. UR - https://doi.org/10.54286/ikjm.1536223 L1 - https://dergipark.org.tr/en/download/article-file/4158053 ER -