TY - JOUR T1 - Enhanced Luminescent Probe Utilizing Schiff Base Ligand for 2,4,6-Trinitrophenol Detection in Aqueous Media AU - Buldurun, Kenan AU - Altun, Ayhan AU - Turan, Nevin PY - 2025 DA - March Y2 - 2024 DO - 10.21597/jist.1540673 JF - Journal of the Institute of Science and Technology JO - J. Inst. Sci. and Tech. PB - Igdir University WT - DergiPark SN - 2536-4618 SP - 228 EP - 240 VL - 15 IS - 1 LA - en AB - This research explored the fluorescence properties of a Schiff base ligand which was synthesized and characterized used by standard spectroscopic methods. The examination into its photophysical and fluorescent sensor properties involved UV-Vis spectroscopy, as well as fluorescence spectroscopy, time-resolved and steady-state. Fluorescent sensors were found to exhibit excellent sensitivity and selectivity for 1,3,5-trinitrophenol (TNP), over testing with other nitroaromatic (dinitrobenzene (DNB), 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (DNT), 2-nitrophenol (2-NP), 4-nitrophenol (4-NP), and 2,4-dinitrophenol (DNP)), explosives with significant fluorescence “off” responses, resulting in immediate fluorescence color change. The binding mechanisms between Schiff base and TNP were assessed using Job’s drawing. The compound exhibited exceptional sensitivity in detecting TNP with an impressively low LOD of 0.253 μM covering a linear working range of 2.50-30.00 μM. The study revealed that the compound exhibited robust fluorescent properties, proved to be effective in fluorescence quenching-based TNP detection in water solutions, and demonstrated both high selectivity and sensitivity. This finding underlines the potential utility of this ligand as a promising tool in environmental monitoring or related fields where the detection of TNP is crucial. KW - Fluorescent sensor KW - Schiff base KW - Nitroaromatic compounds KW - TNP CR - Akhgari, F., Fattahi, H., & Oskoei, Y. M. (2015). Recent advances in nanomaterial-based sensors for detection of trace nitroaromatic explosives. Sensors and Actuators B-Chemical, 221, 867-878. doi:10.1016/j.snb.2015.06.146 CR - Albani, J. R. (2007). Principles and Applications of Fluorescence Spectroscopy. Principles and Applications of Fluorescence Spectroscopy, 1-255. doi:10.1002/9780470692059 CR - Altun, A. (2024). Utilization of Schiff base-Co(II) complex as a stable luminescent probe for the highly selective detection of 2,4,6-trinitrophenol in an aqueous medium. Journal of Luminescence, 271, 120593. doi:10.1016/j.jlumin.2024.120593 CR - Altun, A., Apetrei, R. M., & Camurlu, P. (2021). Functional biosensing platform for urea detection: copolymer of Fc-substituted 2,5-di(thienyl)pyrrole and 3,4-ethylenedioxythiophene. Journal of the Electrochemical Society, 168(6). doi:10.1149/1945-7111/ac0600 CR - Altun, A., Senkuytu, E., & Davarci, D. (2023). Synthesis and crystal structure of the 6-oxyquinoline derivative cyclotriphosphazene chemosensor with high selectivity and immediate sensitivity for Fe(III) ion and TNT detection. Polyhedron, 240. doi:10.1016/j.poly.2023.116458 CR - Buldurun, K. (2020). Synthesis, characterization, thermal study and optical property evaluation of Co(II), Pd(II) complexes containing Schiff bases of thiophene-3-carboxylate ligand. Journal of Electronic Materials, 49(3), 1935-1943. doi:10.1007/s11664-019-07876-2 CR - Buldurun, K., & Özdemir, M. (2020). Ruthenium(II) complexes with pyridine-based Schiff base ligands: Synthesis, structural characterization and catalytic hydrogenation of ketones. Journal of Molecular Structure, 1202. doi:10.1016/j.molstruc.2019.127266 CR - Buldurun, K., Turan, N., Savcı, A., Alan, Y., & Colak, N. (2022). Synthesis, characterization, X-ray diffraction analysis of a tridentate Schiff base ligand and its complexes with Co(II), Fe(II), Pd(II) and Ru(II): Bioactivity studies. Iranian Journal of Chemistry and Chemical Engineering, 41(8), 2635-2649. doi:10.30492/ijcce.2021.531629.4775 CR - Calcerrada, M., González-Herráez, M., & García-Ruiz, C. (2016). Recent advances in capillary electrophoresis instrumentation for the analysis of explosives. Trac-Trends in Analytical Chemistry, 75, 75-85. doi:10.1016/j.trac.2015.08.005 CR - Carrillo-Carrión, C., Simonet, B. M., & Valcárcel, M. (2013). Determination of TNT explosive based on its selectively interaction with creatinine-capped CdSe/ZnS quantum dots. Analytica Chimica Acta, 792, 93-100. doi:10.1016/j.aca.2013.07.004 CR - Caygill, J. S., Davis, F., & Higson, S. P. J. (2012). Current trends in explosive detection techniques. Talanta, 88, 14-29. doi:10.1016/j.talanta.2011.11.043 CR - Chhatwal, M., Mittal, R., Gupta, R. D., & Awasthi, S. K. (2018). Sensing ensembles for nitroaromatics. Journal of Materials Chemistry C, 6(45), 12142-12158. doi:10.1039/c8tc03929a CR - Dey, S., Maity, A., Shyamal, M., Das, D., Maity, S., Kumar Giri, P., Mudi, N., Samanta, S.S., Hazra P. and Misra A. (2019). An antipyrine based fluorescence “turn-on” dual sensor for Zn2+ and Al3+ and its selective fluorescence “turn-off” sensing towards 2,4,6- trinitrophenol (TNP) in the aggregated state. Photochem. Photobiol. Sci., 18, 2717. doi: 10.1039/c9pp00226j CR - Desai V, Modi K, Panjwani F, Seth BK, Vora M, Parikh J, Jain VK. (2024). Design and Synthesis of an Efficient Fluorescent Probe Based on Oxacalix[4]arene for the Selective Detection of Trinitrophenol (TNP) Explosives in Aqueous System. J Fluoresc. 34(3):1219-1228. doi: 10.1007/s10895-023-03352-7. Desai, V., Vora, M., Modi, K., Koley Seth, B., Panjwani, F., Verma, A., Patel, N., Patel, C., Jain, V. K., (2023). A Quenched Fluorescence-based Assay for Selective Detection of Nitroaromatic Compounds using Pyrene-Appended Oxacalix[4]arene Host. Chemistry Select, 8, 1-7. doi:10.1002/slct.202302029 CR - Forbes, T. P., & Sisco, E. (2018). Recent advances in ambient mass spectrometry of trace explosives. Analyst, 143(9), 1948-1969. doi:10.1039/c7an02066j CR - Gillibert, R., Huang, J. Q., Zhang, Y., Fu, W. L., & de la Chapelle, M. L. (2018). Explosive detection by Surface Enhanced Raman Scattering. Trac-Trends in Analytical Chemistry, 105, 166-172. doi:10.1016/j.trac.2018.03.018 CR - Grate, J. W., Ewing, R. G., & Atkinson, D. A. (2012). Vapor-generation methods for explosives-detection research. Trac-Trends in Analytical Chemistry, 41, 1-14. doi:10.1016/j.trac.2012.08.007 CR - Guo, X., Gao, B., Cui, X., Wang, J. H., Dong, W. Y., Duan, Q., Su, Z. M. (2021). PL sensor for sensitive and selective detection of 2,4,6-trinitrophenol based on carbazole and tetraphenylsilane polymer. Dyes and Pigments, 191. doi:109379. 10.1016/j.dyepig.2021.109379 CR - Hu, Z. C., Deibert, B. J., & Li, J. (2014). Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chemical Society Reviews, 43(16), 5815-5840. doi:10.1039/c4cs00010b CR - Hung, H. C., Cheng, C. W., Wang, Y. Y., Chen, Y. J., & Chung, W. S. (2009). Highly selective fluorescent sensors for Hg and Ag based on bis-triazole-coupled polyoxyethylenes in MeOH solution. European Journal of Organic Chemistry, 2009(36), 6360-6366. doi:10.1002/ejoc.200900987 CR - Kartha, K. K., Sandeep, A., Praveen, V. K., & Ajayaghosh, A. (2015). Detection of nitroaromatic explosives with fluorescent molecular assemblies and π-gels. Chemical Record, 15(1), 252-265. doi:10.1002/tcr.201402063 CR - Kose, A., Erkan, S., & Tümer, M. (2023). A series of phenanthroline-imine compounds: Computational, OLED properties and fluorimetric sensing of nitroaromatic compounds. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 286. doi:122006 10.1016/j.saa.2022.122006 CR - Kreno, L. E., Leong, K., Farha, O. K., Allendorf, M., Van Duyne, R. P., & Hupp, J. T. (2012). Metal-Organic Framework Materials as Chemical Sensors. Chemical Reviews, 112(2), 1105-1125. doi:10.1021/cr200324t CR - Kumar, V., Maiti, B., Chini, M. K., De, P., & Satapathi, S. (2019). Multimodal fluorescent polymer sensor for highly sensitive detection of nitroaromatics. Scientific Reports, 9. doi:7269 10.1038/s41598-019-43836-w CR - Kumari, S., Joshi, S., Cordova-Sintjago, T. C., Pant, D. D., & Sakhuja, R. (2016). Highly sensitive fluorescent imidazolium-based sensors for nanomolar detection of explosive picric acid in aqueous medium. Sensors and Actuators B-Chemical, 229, 599-608. doi:10.1016/j.snb.2016.02.019 CR - Li, S., Ouyang, T., Guo, X., Dong,W., Ma, Z., Fei, T. (2023). Tetraphenylethene-based cross-linked conjugated polymer nanoparticles for efficient detection of 2,4,6-trinitrophenol in aqueous phase. materials, 16, 6458. doi:10.3390/ma16196458 CR - Lustig, W. P., Mukherjee, S., Rudd, N. D., Desai, A. V., Li, J., & Ghosh, S. K. (2017). Metal-organic frameworks: functional luminescent and photonic materials for sensing applications. Chemical Society Reviews, 46(11), 3242-3285. doi:10.1039/c6cs00930a CR - Mahadevi, P., Sumathi, S. (2023). Schiff base metal complexes: Synthesis, optoelectronic, biological studies, fabrication of zinc oxide nanoparticles and its photocatalytic activity, Results in Chemistry, 6, 101026. doi:10.1016/j.rechem.2023.101026 CR - McQuade, D. T., Pullen, A. E., & Swager, T. M. (2000). Conjugated polymer-based chemical sensors. Chemical Reviews, 100(7), 2537-2574. doi:10.1021/cr9801014 CR - Nayab, S., Faisal, S., Khan, W., Ateeq, M., Khan, S. W., Kim, E., & Lee, H. (2023). Pyridine‐derived Schiff base copper (II), zinc (II), and cadmium (II) complexes: Synthesis, structural properties, biological evaluation, and docking studies. Applied Organometallic Chemistry, 37, e7163. doi:10.1002/aoc.7163 CR - Özdemir, M. (2019). Yeni Schiff bazı ligandları ve Ru(II), Pd(II) metal komplekslerin sentezi, karakterizasyonu ve katalitik aktiviteleri. (master’s thesis). CR - Rose, A., Zhu, Z. G., Madigan, C. F., Swager, T. M., & Bulovic, V. (2005). Sensitivity gains in chemosensing by lasing action in organic polymers. Nature, 434(7035), 876-879. doi:10.1038/nature03438 CR - Salinas, Y., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., Costero, A. M., Parra, M., & Gil, S. (2012). Optical chemosensors and reagents to detect explosives. Chemical Society Reviews, 41(3), 1261-1296. doi:10.1039/c1cs15173h CR - Sharma, V., & Mehata, M. S. (2021). Rapid optical sensor for recognition of explosive 2,4,6-TNP traces in water through fluorescent ZnSe quantum dots. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 260. doi:119937. 10.1016/j.saa.2021.119937 CR - Sun, X. C., Wang, Y., & Lei, Y. (2015). Fluorescence based explosive detection: from mechanisms to sensory materials. Chemical Society Reviews, 44(22), 8019-8061. doi:10.1039/c5cs00496a CR - Trinh, D. T. T., Khanitchaidecha, W., Channei, D., & Nakaruk, A. (2019). Synthesis, characterization and environmental applications of bismuth vanadate. Research on Chemical Intermediates, 45(10), 5217-5259. doi:10.1007/s11164-019-03912-2 CR - Tsai, M. J., Li, C. Y., & Wu, J. Y. (2018). Luminescent Zn(II) coordination polymers as efficient fluorescent sensors for highly sensitive detection of explosive nitroaromatics. Crystengcomm, 20(42), 6762-6774. doi:10.1039/c8ce01371c CR - Turan, N., Buldurun, K., Türkan, F., Aras, A., Çolak, N., Murahari, M., Bursal, E., Mantarci, A. (2022). Some metal chelates with Schiff base ligand: synthesis, structure elucidation, thermal behavior, XRD evaluation, antioxidant activity, enzyme inhibition, and molecular docking studies. Molecular Diversity, 26(5), 2459-2472. doi:10.1007/s11030-021-10344-x CR - Ture, S.A., Pattathil, S.D., Zing, B.Z., Abbaraju, V. (2023). Fluorescence Sensing of Some Important Nitroaromatic Compounds by Using Polyaniline Ag Composite. Micro, 3, 224–238. https://doi.org/10.3390/micro3010016 CR - Tümay, S. O., & Yesilot, S. (2019). Tripodal synthetic receptors based on cyclotriphosphazene scaffold for highly selective and sensitive spectrofluorimetric determination of iron(III) in water samples. Journal of Photochemistry and Photobiology a-Chemistry, 372, 156-167. doi:10.1016/j.jphotochem.2018.12.012 CR - Verbitskiy, E. V., Rusinov, G. L., Chupakhin, O. N., & Charushin, V. N. (2020). Design of fluorescent sensors based on azaheterocyclic push-pull systems towards nitroaromatic explosives and related compounds: A review. Dyes and Pigments, 180. doi:108414 10.1016/j.dyepig.2020.108414 CR - Wang, C. P., Sheng, W. W., Sun, C., Lei, J., & Hu, J. S. (2024). A cobalt-coordination polymer as a highly selective and sensitive luminescent sensor for detecting 2,4,6-trinitrophenol. Molecular Crystals and Liquid Crystals, 768(3), 117-126. doi:10.1080/15421406.2023.2262857 CR - Wen, P., Amin, M., Herzog, W. D., & Kunz, R. R. (2018). Key challenges and prospects for optical standoff trace detection of explosives. Trac-Trends in Analytical Chemistry, 100, 136-144. doi:10.1016/j.trac.2017.12.014 CR - Wyman, J. F., Guard, H. E., Won, W. D., & Quay, J. H. (1979). Conversion of 2,4,6-trinitrophenol to a mutagen by pseudomonas-aeruginosa. Applied and Environmental Microbiology, 37(2), 222-226. doi:10.1128/Aem.37.2.222-226.1979 CR - Wyman, J. F., Serve, M. P., Hobson, D. W., Lee, L. H., & Uddin, D. E. (1992). Acute Toxicity, Distribution, and Metabolism of 2,4,6-Trinitrophenol (Picric Acid) in Fischer 344 Rats. Journal of Toxicology and Environmental Health, 37(2), 313-327. doi:10.1080/15287399209531672 CR - Yu, H. A., DeTata, D. A., Lewis, S. W., & Silvester, D. S. (2017). Recent developments in the electrochemical detection of explosives: Towards field-deployable devices for forensic science. Trac-Trends in Analytical Chemistry, 97, 374-384. doi:10.1016/j.trac.2017.10.007 CR - Zhang, Q., Zhang, D. M., Lu, Y. L., Yao, Y., Li, S., & Liu, Q. J. (2015). Graphene oxide-based optical biosensor functionalized with peptides for explosive detection. Biosensors & Bioelectronics, 68, 494-499. doi:10.1016/j.bios.2015.01.040 CR - Zhao, Y. F., Xu, L. B., Kong, F. L., & Yu, L. (2021). Design and preparation of poly(tannic acid) nanoparticles with intrinsic fluorescence: A sensitive detector of picric acid. Chemical Engineering Journal, 416, 129090. doi:10.1016/j.cej.2021.129090 CR - Zheng, Y. C., Wang, S., Li, R. F., Pan, L., Li, L. Q., Qi, Z. P., & Li, C. J. (2021). Highly selective detection of nitroaromatic explosive 2,4,6-trinitrophenol (TNP) using N-doped carbon dots. Research on Chemical Intermediates, 47(6), 2421-2431. doi:10.1007/s11164-021-04410-0 UR - https://doi.org/10.21597/jist.1540673 L1 - https://dergipark.org.tr/en/download/article-file/4178334 ER -