TY - JOUR T1 - A numerical aerodynamic analysis of a vertical axis wind turbine in a wind tunnel TT - Dikey eksenli bir rüzgar türbininin rüzgar tünelinde sayısal aerodinamik analizi AU - Yeşilyurt, Muhammet Kaan AU - Mustafaoğlu (nasiri Khalaji), Mansur PY - 2025 DA - June Y2 - 2025 DO - 10.17714/gumusfenbil.1545187 JF - Gümüşhane Üniversitesi Fen Bilimleri Dergisi PB - Gumushane University WT - DergiPark SN - 2146-538X SP - 590 EP - 607 VL - 15 IS - 2 LA - en AB - Within the framework of the global attempt towards reducing greenhouse gases and providing sustainable renewable energy to meet the growing energy demand, the research on the development of new renewable energy systems as well as on improving the efficiency of existing systems has gained great momentum over the recent decades. The applications and use of wind energy, a clean energy known and used since ancient times, have evolved in recent years. On the focus of several studies, either experimental or numerical, was developing novel wind turbines that offer greater efficiency. This research, in this respect, presents a numerical aerodynamic analysis of a helical blade vertical-axis wind turbine (VAWT) modeled in a wind tunnel in SOLIDWORKS and analyzed for its aerodynamic performance in ANSYS Fluent using the SST k-ω method. The stationary and rotary parts were meshed separately, and velocity and pressure contours were obtained and examined. The results of the numerical model suggested better performance of the hybrid helical blade turbine compared to Savonius or Darrieus turbines. The aerodynamic performance of a hybrid Savonius-Darrieus VAWT using numerical simulations in a three-dimensional wind tunnel revealed that the proposed design achieved a maximum torque of 2.05 Nm at a tip speed ratio (TSR) of 2.0, with a power coefficient (Cp) of 0.42, representing a 10% improvement over traditional Darrieus turbines. The hybrid design combines the high starting torque of the Savonius turbine with the efficiency of the Darrieus turbine, demonstrating superior performance in low-wind conditions. Numerical results were validated against experimental data from Castelli et al. (2011), showing good agreement with a maximum deviation of 10%. The findings highlight the potential of hybrid VAWTs for urban and low-wind environments, offering a sustainable and efficient energy solution. KW - CFD KW - Numerical flow dynamics KW - Renewable energy KW - Vertical-axis wind turbines (VAWTs) N2 - Sera gazlarını azaltma ve artan enerji talebini karşılamak için sürdürülebilir yenilenebilir enerji sağlama yönündeki küresel çabalar çerçevesinde, yeni yenilenebilir enerji sistemlerinin geliştirilmesi ve mevcut sistemlerin verimliliğinin artırılması üzerine yapılan araştırmalar son yıllarda büyük bir ivme kazanmıştır. Antik çağlardan beri bilinen ve kullanılan temiz bir enerji olan rüzgar enerjisinin uygulamaları ve kullanımı da son yıllarda gelişmiştir. Deneysel veya sayısal olmak üzere birçok çalışmanın odak noktasında, daha fazla verimlilik sunan yeni rüzgar türbinleri geliştirmek yer almıştır. Bu araştırma, bu bağlamda, SOLIDWORKS’te bir rüzgar tünelinde modellenen ve k-ω yöntemi kullanılarak ANSYS Fluent’te aerodinamik performansı analiz edilen helisel kanatlı dikey eksenli rotorlu rüzgar türbininin (VAWT) sayısal aerodinamik analizini sunmaktadır. Sabit ve döner parçalar ayrı ayrı ağa bağlanarak hız ve basınç konturları elde edilmiş ve incelenmiştir. Sayısal modelin sonuçları, hibrit helisel kanatlı türbinin Savonius veya Darrieus türbinlerine kıyasla daha iyi performans gösterdiğini ortaya koymuştur. Üç boyutlu bir rüzgar tünelinde sayısal simülasyonlar kullanılarak hibrit Savonius-Darrieus VAWT'nin aerodinamik performansı, önerilen tasarımın TSR 2 değerinde ve 0,42 güç katsayısında 2,05 Nm maksimum torka ulaştığını göstermiştir; bu da geleneksel Darrieus türbinlerine göre %10'luk bir iyileştirme sağlandığını göstermektedir. Hibrit tasarım, Savonius türbininin yüksek başlangıç torkunu Darrieus türbininin verimliliğiyle birleştirerek düşük rüzgar koşullarında üstün performans gösteriyor. Sayısal sonuçlar, literatürde elde edilen deneysel verilerle doğrulanmış ve %10'luk maksimum sapma ile iyi bir uyum göstermiştir. Bulgular, hibrit VAWT'lerin kentsel ve düşük rüzgarlı ortamlar için potansiyelini vurgulayarak sürdürülebilir ve verimli bir enerji çözümü sunduğunu göstermektedir. CR - Abdelsattar, M., Hafez, W. A., Elbaset, A. A., Kamel, S., Kasem Alaboudy, A. H., Khan, B. Z., & Zaki Diab, A. A. (2022). Voltage Stability Improvement of an Egyptian Power Grid‐based Wind Energy System Using STATCOM. Wind Energy. https://doi.org/10.1002/we.2716 CR - Altan, B. D., & Atılgan, M. (2008). An experimental and numerical study on the improvement of the performance of Savonius wind rotor. Energy Conversion and Management, 49(12), 3425–3432. https://doi.org/10.1016/j.enconman.2008.08.021 CR - Arab Golarche, A., Moghiman, M., & MalAbad, S. M. J. (2016). Numerical simulation of darrieus wind turbine Using 6DOF model to consider the effect of inertia and the fluid-solid interaction. Modares Mechanical Engineering, 15(12), 143–152. CR - Bakkari, M. (2023). A Review of Wind Energy Potential in Morocco: New Challenges and Perspectives. Wind Engineering. https://doi.org/10.1177/0309524x231200582 CR - Baqersad, J., Niezrecki, C., & Avitabile, P. (2015). Numerical and Experimental Analysis of the Boundary Conditions Effects on the Dynamics of Wind Turbines. Wind Engineering. https://doi.org/10.1260/0309-524x.39.4.437 CR - Batista, N. C., Melício, R., Matias, J., & S. Catalào, J. P. (2024). Self-Start Performance Evaluation in Darrieus-Type Vertical Axis Wind Turbines: Methodology and Computational Tool Applied to Symmetrical Airfoils. Renewable Energy and Power Quality Journal. https://doi.org/10.24084/repqj09.302 CR - Bortolotti, P., Ivanov, H., Johnson, N., Barter, G., Veers, P. S., & Namura, N. (2021). Challenges, Opportunities, and a Research Roadmap for Downwind Wind Turbines. Wind Energy. https://doi.org/10.1002/we.2676 CR - Brandao, F. L., Bhatt, M., & Mahesh, K. (2020). Numerical study of cavitation regimes in flow over a circular cylinder. Journal of Fluid Mechanics, 885. https://doi.org/10.1017/jfm.2019.971 CR - Brusca, S., Lanzafame, R., & Messina, M. (2014). Design of a Vertical-Axis Wind Turbine: How the Aspect Ratio Affects the Turbine’s Performance. International Journal of Energy and Environmental Engineering. https://doi.org/10.1007/s40095-014-0129-x CR - Buckney, N., Green, S., & Pirrera, A. (2012). On the Structural Topology of Wind Turbine Blades. Wind Energy. https://doi.org/10.1002/we.1504 CR - Capps, S. B., Hall, A., & Hughes, M. (2012). Sensitivity of Southern California Wind Energy to Turbine Characteristics. Wind Energy. https://doi.org/10.1002/we.1570 CR - Castellani, F., Astolfi, D., Peppoloni, M., Natili, F., Buttà, D., & Hirschl, A. (2019). Experimental Vibration Analysis of a Small Scale Vertical Wind Energy System for Residential Use. Machines, 7(2), 35. https://doi.org/10.3390/machines7020035 CR - Castelli, M. R., Englaro, A., & Benini, E. (2011). The Darrieus wind turbine: Proposal for a new performance prediction model based on CFD. Energy, 36(8), 4919–4934. CR - Chabane, F., Arif, A., & Barkat, M. A. (2022). Aerodynamic Shape Optimization of a Vertical-Axis Wind Turbine With Effect Number of Blades. Dyna. https://doi.org/10.15446/dyna.v89n220.94343 CR - Chamorro, L. P., Tobin, N., A. Arndt, R. E., & Sotiropoulos, F. (2013). Variable‐sized Wind Turbines Are a Possibility for Wind Farm Optimization. Wind Energy. https://doi.org/10.1002/we.1646 CR - Chatterjee, T., & Peet, Y. (2018). Exploring the Benefits of Vertically Staggered Wind Farms: Understanding the Power Generation Mechanisms of Turbines Operating at Different Scales. Wind Energy. https://doi.org/10.1002/we.2284 CR - Dai, Y. M., Gardiner, N., & Lam, W.‑H. (2010). Cfd modeling strategy of a straight-bladed vertical axis marine current turbine. In The Twentieth International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers. CR - Dhunny, A. Z., Allam, Z., Lollchund, Dookhitram, K., & Rughooputh, S. (2019). A Decentralized Model of Wind Turbine Optimization. Wind Engineering. https://doi.org/10.1177/0309524x19849858 CR - Erfort, G., Backström, T. W. von, & Venter, G. (2019). Reduction in the Torque Ripple of a Vertical Axis Wind Turbine Through Foil Pitching Optimization. Wind Engineering. https://doi.org/10.1177/0309524x19836711 CR - Gebreel Abdalrahman, Mohamed A Daoud, William W Melek, Fue-Sang Lien, & Eugene Yee. (2019). Design and Implementation of an Intelligent Blade Pitch Control System and Stability Analysis for a Small Darrieus Vertical-Axis Wind Turbine. https://doi.org/10.13140/RG.2.2.35190.24642 CR - Gupta, R., Das, R., & Sharma, K. (2006). Experimental study of a Savonius-Darrieus wind machine. In Proceedings of the International Conference on Renewable Energy for Developing Countries. University of Columbia. CR - Hameed, Z., Vatn, J., & Heggset, J. (2011). Challenges in the reliability and maintainability data collection for offshore wind turbines. Renewable Energy, 36(8), 2154–2165. https://doi.org/10.1016/j.renene.2011.01.008 CR - Hossain, J., Sharma, D., Mishra, N. K., Ansari, M. Z., & Kishore, V. (2016). Re-Assessment of Wind Energy Potential With New Technology in India. Wind Engineering. https://doi.org/10.1177/0309524x16651176 CR - Hu, Y., Wang, T., Jin, H., Cao, X [Xianfeng], & Zhang, C. (2017). Experimental Study on Aerodynamic Characteristics of Vertical-Axis Wind Turbine. International Journal of Smart Grid and Clean Energy. https://doi.org/10.12720/sgce.6.2.104-113 CR - Huang, S., Shukla, A., Pekny, J. F., Venkatasubramanian, V., & Reklaitis, G. V. (2011). The Effects of Vehicle‐to‐grid Systems on Wind Power Integration. Wind Energy. https://doi.org/10.1002/we.520 CR - Islam, M. (2008). Analysis of fixed-pitch straight-bladed VAWT with asymmetric airfoils [PhD Thesis, University of Windsor, Ontario]. CR - Islam, M., Ting, D. S.‑K., & Fartaj, A. (2008). Aerodynamic models for Darrieus-type straight-bladed vertical axis wind turbines. Renewable and Sustainable Energy Reviews, 12(4), 1087–1109. CR - Ji, X., & Schluter, J. (2011). Design and analysis of small-scale vertical axis wind turbine. In Renewable power generation [electronic resource]: 6 - 8 September 2011, Raddison Blu, Edinburgh, UK (P17-P17). IET. https://doi.org/10.1049/cp.2011.0214 CR - Kadhim H. Suffer, R. Usubamatov, G. Quadir, & K. Ismail. (2014). Modeling and Numerical Simulation of a Vertical Axis Wind Turbine Having Cavity Vanes. In Fifth International Conference on Intelligent Systems, Modelling and Simulation (pp. 479–484). CR - Kanno, S., & Ikeda, H. (2017). Next-generation Energy Solutions Aimed at Symbiosis with the Global Environment : Hitachi Review. Hitachi Review, 66(5), 460–465. https://www.hitachihyoron.com/rev/archive/2017/r2017_05/R5-01/index.html CR - Khalaji, M. N., Aliihsan, K., & Kotcioglu, I. (2019). Investigation of numerical analysis velocity contours k-ε model of RNG, standard and realizable turbulence for different geometries. International Journal of Innovative Research and Reviews, 3(2), 29–34. CR - Khammas, F. A., Suffer, K. H., Usubamatov, R., & Mustaffa, M. T. (2015). Overview of Vertical Axis Wind Turbine (VAWT) Is One of the Wind Energy Application. Applied Mechanics and Materials. https://doi.org/10.4028/www.scientific.net/amm.793.388 CR - Kumar, N., & Prakash, O. (2023). Wind Energy Potential and Its Current Status in India. Wind Engineering. https://doi.org/10.1177/0309524x231183373 CR - Kyozuka, Y. (2008). An experimental study on the Darrieus-Savonius turbine for the tidal current power generation. Journal of Fluid Science and Technology, 3(3), 439–449. CR - Li, Z., Liu, M., Cao, X [Xin], Gao, M., Cheng, L., & Sun, H. (2022). Aerodynamic Performance Analysis and Power Generation Characteristics Experiment of Vertical Axis Wind Turbine. Engineering Reports. https://doi.org/10.1002/eng2.12500 CR - Liu, F., Li, C., Xu, Y., Tang, G., & Xie, Y. (2020). A New Lower and Upper Bound Estimation Model Using Gradient Descend Training Method for Wind Speed Interval Prediction. Wind Energy. https://doi.org/10.1002/we.2574 CR - Ma, S. (2024). Coal-Fired Power Plants Using Ammonia for Flexibility Enhancement Under Carbon Control Strategies: Status, Development, and Perspectives. Energy & Fuels. https://doi.org/10.1021/acs.energyfuels.3c05091 CR - MacPhee, D., & Beyene, A. (2012). Recent Advances in Rotor Design of Vertical Axis Wind Turbines. Wind Engineering. https://doi.org/10.1260/0309-524x.36.6.647 CR - Morgulis, N., & Seifert, A. (2015). Fluidic Flow Control Applied for Improved Performance of Darrieus Wind Turbines. Wind Energy. https://doi.org/10.1002/we.1938 CR - Niziolek, A. M., Onel, O., Guzman, Y. A., & Floudas, C. A. (2016). Biomass-Based Production of Benzene, Toluene, and Xylenes via Methanol: Process Synthesis and Deterministic Global Optimization. Energy & Fuels. https://doi.org/10.1021/acs.energyfuels.6b00619 CR - Pan, L., Zhu, Z., Shi, Z., & Wang, L. (2021). Modeling and Investigation of Blade Trailing Edge of Vertical Axis Offshore Wind Turbine. Sustainability. https://doi.org/10.3390/su131910905 CR - Ponta, F., & Dutt, G. S. (2000). An improved vertical-axis water-current turbine incorporating a channelling device. Renewable Energy, 20(2), 223–241. CR - Porté-Agel, F., Bastankhah, M., & Shamsoddin, S. (2020). Wind-Turbine and Wind-Farm Flows: A Review. Boundary-Layer Meteorology, 174(1), 1–59. https://doi.org/10.1007/s10546-019-00473-0 CR - Sankar, T. L., & Tiryakioğlu, M. (2008). Design and Power Characterization of a Novel Vertical Axis Wind Energy Conversion System (VAWECS). Wind Engineering. https://doi.org/10.1260/030952408787548884 CR - Scott, R., Viggiano, B., Dib, T., Ali, N., Hölling, M., Peinke, J., & Cal, R. B. (2020). Wind Turbine Partial Wake Merging Description and Quantification. Wind Energy. https://doi.org/10.1002/we.2504 CR - Shiono, M., Suzuki, K., & Kiho, S. (2002). Output characteristics of Darrieus water turbine with helical blades for tidal current generations. İn The twelfth international offshore and polar engineering conference. In Twelfth International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers. CR - Sokolov, P., Jin, J. Y., & Virk, M. S. (2018). Accreted Ice Mass Ratio (k‐factor) for Rotating Wind Turbine Blade Profile and Circular Cylinder. Wind Energy. https://doi.org/10.1002/we.2298 CR - Sun, X., Chen, Y., Cao, Y., Wu, G., Zheng, Z. C., & Huang, D. (2016). Research on the Aerodynamic Characteristics of a Lift Drag Hybrid Vertical Axis Wind Turbine. Advances in Mechanical Engineering. https://doi.org/10.1177/1687814016629349 CR - Takamatsu, Y. (1991). Experimental studies on a preferable blade profile for high efficiency and the blade characteristics of Darrieus-type cross-flow water turbines. JSME İnternational Journal. Ser, 34(2), 149–156. CR - Takao, M [M.] (2008). A straight-bladed vertical axis wind turbine with a directed guide vane row. Journal of Fluid Science and Technology, 3(3), 379–386. CR - Takao, M [Manabu], Kuma, H., Maeda, T., Kamada, Y., Oki, M., & Minoda, A. (2009). A straight-bladed vertical axis wind turbine with a directed guide vane row — Effect of guide vane geometry on the performance —. Journal of Thermal Science, 18(1), 54–57. https://doi.org/10.1007/s11630-009-0054-0 CR - Takenouchi, K., & Furukawa, A. (2005). Self-starting characteristics of ducted Darrieus turbine for extra-low head power. In Proc. of Expo World Conf. on Wind Energy, Renewable Energy, Fuel Cell & Exhibition. CR - Tawi, K., Yaakob, O., & Sunanto, D. T. (2010). Computer simulation studies on the effect overlap ratio for savonius type vertical axis marine current turbine. International Journal of Engineering, 23(1), 79–88. CR - Tong, X. (2023). Research on Key Technologies of Large-Scale Wind-Solar Hybrid Grid Energy Storage Capacity Big Data Configuration Optimization. Wind Engineering. https://doi.org/10.1177/0309524x231188951 CR - Toptaş, E., Bayrak, M. A., & Boz, T. (2020). Vertical Axis Hybrid Wind Turbine Design. Journal of Mechatronics and Artificial Intelligence in Engineering. https://doi.org/10.21595/jmai.2020.21508 CR - Xie, S., & Archer, C. L. (2014). Self‐similarity and Turbulence Characteristics of Wind Turbine Wakes via Large‐eddy Simulation. Wind Energy. https://doi.org/10.1002/we.1792 CR - Yan, P., Li, Y., Gao, Q., Lian, S., & Wu, Q. (2023). Design and Analysis of an Adaptive Dual-Drive Lift–Drag Composite Vertical-Axis Wind Turbine Generator. Energies. https://doi.org/10.3390/en16227529 CR - Zhang, J., Wang, C., Liu, W., Zhu, J., Yan, Y., & Zhao, H. (2023). Optimization of the Energy Capture Performance of the Lift-Drag Hybrid Vertical-Axis Wind Turbine Based on the Taguchi Experimental Method and CFD Simulation. Sustainability. https://doi.org/10.3390/su15118848 UR - https://doi.org/10.17714/gumusfenbil.1545187 L1 - https://dergipark.org.tr/en/download/article-file/4197644 ER -