TY - JOUR T1 - Influence Of Graphene Oxide Amount on The Structure and Morphology of In2O3-Reduced Graphene Oxide Composite Film TT - Grafen Oksit Miktarının In2O3-İndirgenmiş Grafen Oksit Kompozit Filminin Yapısı ve Morfolojisi Üzerindeki Etkisi AU - Öztürk Doğan, Hülya AU - Sezgin, Mertcan PY - 2025 DA - June Y2 - 2024 DO - 10.21597/jist.1545430 JF - Journal of the Institute of Science and Technology JO - J. Inst. Sci. and Tech. PB - Igdir University WT - DergiPark SN - 2536-4618 SP - 615 EP - 623 VL - 15 IS - 2 LA - en AB - In this study, indium oxide-reduced graphene oxide (In2O3-rGO) composites were produced in one-pot using an electrochemical technique for the first time. The effect of graphene oxide (GO) amount on the composition and morphology of the composite structure was investigated. For this purpose, electrolyte solutions containing GO and In3+ ions were mixed at different volume ratios. Deposits were carried out at constant potential in different electrolyte compositions. The characterizations of the composite structures prepared under different experimental parameters were investigated using X-ray diffraction spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and field effect scanning electron microscopy (FESEM) techniques. It was concluded that the In2O3-rGO composite with the best composition was obtained in 1:1 GO: In3+ electrolyte by volume. KW - • Electrochemical deposition KW - • Indium oxide KW - • Nanocomposite KW - • Reduced graphene oxide N2 - Bu çalışmada, elektrokimyasal bir teknik kullanılarak ilk defa tek kapta indiyum oksitle indirgenmiş grafen oksit (In2O3-rGO) kompozitleri üretildi. Grafen oksit (GO) miktarının kompozit yapının kompozisyonu ve morfolojisi üzerindeki etkisi incelendi. Bu amaçla, GO ve In3+ iyonları içeren elektrolit çözeltileri farklı hacim oranlarında karıştırıldı. Biriktirmeler farklı elektrolit kompozisyonlarında sabit potansiyelde gerçekleştirildi. Farklı deneysel parametreler altında hazırlanan kompozit yapıların karakterizasyonları X-ışını kırınım spektroskopisi (XRD), X-ışını fotoelektron spektroskopisi (XPS), Raman spektroskopisi ve alan etkili taramalı elektron mikroskobu (FESEM) teknikleri kullanılarak incelendi. En iyi kompozisyona sahip In2O3-rGO kompozitinin hacimce 1:1 GO:In3+ elektrolit oranında elde edildiği sonucuna varıldı. CR - Alaizeri, Z. M., Alhadlaq, H. A., Aldawood, S., Akhtar, M. J., Aziz, A. A., & Ahamed, M. (2023). Photocatalytic Degradation of Methylene Blue and Anticancer Response of In2O3/RGO Nanocomposites Prepared by a Microwave-Assisted Hydrothermal Synthesis Process. Molecules, 28(13), Article 13. https://doi.org/10.3390/molecules28135153 CR - Al-Gaashani, R., Najjar, A., Zakaria, Y., Mansour, S., & Atieh, M. A. (2019). XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods. Ceramics International, 45(11), 14439–14448. https://doi.org/10.1016/j.ceramint.2019.04.165 CR - Anand, K., Kaur, J., Singh, R. C., & Thangaraj, R. (2016). Structural, optical and gas sensing properties of pure and Mn-doped In2O3 nanoparticles. Ceramics International, 42(9), 10957–10966. https://doi.org/10.1016/j.ceramint.2016.03.233 CR - Doğan, H. Ö. (2019). Ethanol electro-oxidation in alkaline media on Pd/electrodeposited reduced graphene oxide nanocomposite modified nickel foam electrode. Solid State Sciences, 98, 106029. https://doi.org/10.1016/j.solidstatesciences.2019.106029 CR - Doğan, H. Ö., Çepni, E., Urhan, B. K., & Eryiğit, M. (2019). Non-Enzymatic Amperometric Detection of H2O2 on One-Step Electrochemical Fabricated Cu2O/Electrochemically Reduced Graphene Oxide Nanocomposite. ChemistrySelect, 4(28), 8317–8321. https://doi.org/10.1002/slct.201901588 CR - El-Khouly, S. M., Fathy, N. A., Farag, H. K., & Aboelenin, R. M. M. (2020). In2O3 catalyst supported on carbonaceous nanohybrid for enhancing the removal of methyl orange dye from aqueous solutions. Desalination and Water Treatment, 174, 344–353. https://doi.org/10.5004/dwt.2020.24840 CR - Eryiğit, M., Kurt Urhan, B., Doğan, H. Ö., Özer, T. Ö., & Demir, Ü. (2022). ZnO Nanosheets-Decorated ERGO Layers: An Efficient Electrochemical Sensor for Non-Enzymatic Uric Acid Detection. IEEE Sensors Journal, 22(6), 5555–5561. IEEE Sensors Journal. https://doi.org/10.1109/JSEN.2022.3150088 CR - Fang, J., Ma, Z.-H., Xue, J.-J., Chen, X., Xiao, R.-P., & Song, J.-M. (2022). Au doped In2O3 nanoparticles: Preparation, and their ethanol detection with high performance. Materials Science in Semiconductor Processing, 146, 106701. https://doi.org/10.1016/j.mssp.2022.106701 CR - Gan, J., Lu, X., Wu, J., Xie, S., Zhai, T., Yu, M., Zhang, Z., Mao, Y., Wang, S. C. I., Shen, Y., & Tong, Y. (2013). Oxygen vacancies promoting photoelectrochemical performance of In2O3 nanocubes. Scientific Reports, 3(1), 1021. https://doi.org/10.1038/srep01021 CR - Guo, L., Liang, H., Hu, H., Shi, S., Wang, C., Lv, S., Yang, H., Li, H., de Rooij, N. F., Lee, Y.-K., French, P. J., Wang, Y., & Zhou, G. (2023). Large-Area and Visible-Light-Driven Heterojunctions of In2O3/Graphene Built for ppb-Level Formaldehyde Detection at Room Temperature. ACS Applied Materials & Interfaces, 15(14), 18205–18216. https://doi.org/10.1021/acsami.3c00218 CR - Gurlo, A., Ivanovskaya, M., Pfau, A., Weimar, U., & Göpel, W. (1997). Sol-gel prepared In2O3 thin films. Thin Solid Films, 307(1), 288–293. https://doi.org/10.1016/S0040-6090(97)00295-2 CR - Ioni, Y. V., Kraevsky, S. V., Groshkova, Y. A., & Buslaeva, E. Yu. (2021). Immobilization of In2O3 nanoparticles on the surface of reduced graphene oxide. Mendeleev Communications, 31(5), 718–720. https://doi.org/10.1016/j.mencom.2021.09.042 CR - Kurt Urhan, B., Öznülüer, T., Demir, Ü., & Öztürk Doğan, H. (2019). One-Pot Electrochemical Synthesis of Lead Oxide- Electrochemically Reduced Graphene Oxide Nanostructures and Their Electrocatalytic Applications. IEEE Sensors Journal, 19(13), 4781–4788. IEEE Sensors Journal. https://doi.org/10.1109/JSEN.2019.2904738 CR - Mao, Y., Jiang, Y., Liu, H., Jiang, Y., Li, M., Su, W., & He, R. (2024). Ambient electrocatalytic synthesis of urea by co-reduction of NO3− and CO2 over graphene-supported In2O3. Chinese Chemical Letters, 35(3), 108540. https://doi.org/10.1016/j.cclet.2023.108540 CR - Mostafa, N. Y., Badawi, A., & Ahmed, S. I. (2018). Influence of Cu and Ag doping on structure and optical properties of In2O3 thin film prepared by spray pyrolysis. Results in Physics, 10, 126–131. https://doi.org/10.1016/j.rinp.2018.05.030 CR - Öztürk Doğan, H., & Kurt Urhan, B. (2023). NiS@CuBi2O4/ERGO heterostructured electro-catalyst for enhanced hydrogen evolution reaction. Micro and Nanostructures, 183, 207666. https://doi.org/10.1016/j.micrna.2023.207666 CR - Prakash, R., Kumar, S., Ahmed, F., Lee, C. G., & Song, J. I. (2011). Room temperature ferromagnetism in Ni doped In2O3 nanoparticles. Thin Solid Films, 519(23), 8243–8246. https://doi.org/10.1016/j.tsf.2011.03.105 CR - Sawant, J. P., Pathan, H. M., & Kale, R. B. (2021). Spray Pyrolytic Deposition of CuInS2 Thin Films: Properties and Applications. Engineered Science, Volume 13 (March 2021)(8), 51–64. CR - Sekkat, A., Sanchez-Velasquez, C., Bardet, L., Weber, M., Jiménez, C., Bellet, D., Muñoz-Rojas, D., & Huong Nguyen, V. (2024). Towards enhanced transparent conductive nanocomposites based on metallic nanowire networks coated with metal oxides: A brief review. Journal of Materials Chemistry A, 12(38), 25600–25621. https://doi.org/10.1039/D4TA05370B CR - Shanmugasundaram, A., Gundimeda, V., Hou, T., & Lee, D. W. (2017). Realizing Synergy between In2O3 Nanocubes and Nitrogen-Doped Reduced Graphene Oxide: An Excellent Nanocomposite for the Selective and Sensitive Detection of CO at Ambient Temperatures. ACS Applied Materials & Interfaces, 9(37), 31728–31740. https://doi.org/10.1021/acsami.7b06253 CR - Shifu, C., Xiaoling, Y., Huaye, Z., & Wei, L. (2010). Preparation, characterization and activity evaluation of heterostructure In2O3/In(OH)3 photocatalyst. Journal of Hazardous Materials, 180(1), 735–740. https://doi.org/10.1016/j.jhazmat.2010.04.108 CR - Tuzluca, F. N., Yesilbag, Y. O., & Ertugrul, M. (2018). Synthesis of In2O3 nanostructures with different morphologies as potential supercapacitor electrode materials. Applied Surface Science, 427, 956–964. https://doi.org/10.1016/j.apsusc.2017.08.127 CR - Vakh, C., & Koronkiewicz, S. (2023). Surfactants application in sample preparation techniques: Insights, trends, and perspectives. TrAC Trends in Analytical Chemistry, 165, 117143. https://doi.org/10.1016/j.trac.2023.117143 CR - Wiranwetchayan, O., Ruankham, P., Promnopas, W., Choopun, S., Singjai, P., Chaipanich, A., & Thongtem, S. (2018). Effect of nanoporous In2O3 film fabricated on TiO2-In2O3 photoanode for photovoltaic performance via a sparking method. Journal of Solid State Electrochemistry, 22(8), 2531–2543. https://doi.org/10.1007/s10008-018-3968-1 CR - Younis, A., & Osman, A. (2023). Solvent-free Organic Reaction Techniques as an Approach for Green Chemistry. Journal of the Turkish Chemical Society Section A: Chemistry, 10(2), Article 2. https://doi.org/10.18596/jotcsa.1188983 CR - Zatsepin, D. A., Boukhvalov, D. W., Zatsepin, A. F., Vines, L., Gogova, D., Shur, V. Ya., & Esin, A. A. (2019). Bulk In2O3 crystals grown by chemical vapour transport: A combination of XPS and DFT studies. Journal of Materials Science: Materials in Electronics, 30(20), 18753–18758. https://doi.org/10.1007/s10854-019-02228-6 CR - Zhu, L., Wang, Z., Wang, J., Liu, J., Zhang, J., & Yan, W. (2024). Pt-Embedded Metal–Organic Frameworks Deriving Pt/ZnO-In2O3 Electrospun Hollow Nanofibers for Enhanced Formaldehyde Gas Sensing. Chemosensors, 12(6), Article 6. https://doi.org/10.3390/chemosensors12060093 CR - Zhu, P., Wu, W., Zhou, J., & Zhang, W. (2007). Preparation of size-controlled In2O3 nanoparticles. Applied Organometallic Chemistry, 21(10), 909–912. https://doi.org/10.1002/aoc.1300 UR - https://doi.org/10.21597/jist.1545430 L1 - https://dergipark.org.tr/en/download/article-file/4198639 ER -