TY - JOUR T1 - Decompositions of multiplicative semigroups of m-domain rings and reduced Rickart rings AU - Cremer, Insa PY - 2025 DA - January Y2 - 2024 DO - 10.24330/ieja.1554197 JF - International Electronic Journal of Algebra JO - IEJA PB - Abdullah HARMANCI WT - DergiPark SN - 1306-6048 SP - 273 EP - 296 VL - 37 IS - 37 LA - en AB - The main result of this article is that the multiplicative semigroup of an m-domain ring is a strong semilattice of certain subsemigroups, each of which turns out to be a \rcancellative\ monoid, and that this presentation of the semigroup as a strong semilattice of \rcancellative\ semigroups is essentially unique. As a consequence, it is shown that, given an m-domain ring $ \ang{R,+,\cdot} $ with the unary operation $ \dop{} $ mapping every element to its minimal idempotent duplicator (in the sense of N.V.~Subrahmanyam), the algebra $ \ang{R,\cdot,\dop{}} $ is a strong semilattice of \rcancellative\ \dsemigroup s (in the sense of T.~Stokes), also essentially unique. Implications for reduced Rickart rings, which can be seen as a subclass of m-domain rings, are also described. KW - Reduced Rickart ring KW - m-domain ring KW - strong semilattice CR - G. F. Birkenmeier, J. K. Park and S. T. Rizvi, Extensions of Rings and Modules, Springer, New York, 2013. CR - J. Cirulis, Extending the star order to Rickart rings, Linear Multilinear Algebra, 64(8) (2015), 1498-1508. CR - J. Cirulis and I. Cremer, Notes on reduced Rickart rings, I. Representation and equational axiomatizations, Beitr. Algebra Geom., 59(2) (2018), 375-389. CR - J. Cirulis and I. Cremer, Correction to Notes on reduced Rickart rings, I. Representation and equational axiomatizations, Beitr. Algebra Geom., 61(3) (2020), 579-580. CR - W. H. Cornish, The variety of commutative Rickart rings, Nanta Math., 5(2) (1972), 43-51. CR - W. H. Cornish, Boolean orthogonalities and minimal prime ideals, Comm. Algebra, 3(10) (1975), 859-900. CR - J. Fountain, Right PP monoids with central idempotents, Semigroup Forum, 13(3) (1976/77), 229-237. CR - J. A. Fraser and W. K. Nicholson, Reduced PP-rings, Math. Japon., 34(5) (1989), 715-725. CR - J. M. Howie, Fundamentals of Semigroup Theory, London Math. Soc. Monogr. (N.S.), 12 Oxford Sci. Publ., 1995. CR - M. F. Janowitz, A note on Rickart rings and semi-Boolean algebras, Algebra Universalis, 6(1) (1976), 9-12. CR - C. J. Penning, Minimal duplicator rings, Nederl. Akad. Wetensch. Proc. Ser. A 66 Indag. Math., 25 (1963), 295-312. CR - J. Plonka, On a method of construction of abstract algebras, Fund. Math., 61 (1967), 183-189. CR - J. J. Rotman, Advanced Modern Algebra, Grad. Stud. Math., 114, 2010. CR - T. P. Speed, A note on commutative Baer rings, J. Austral. Math. Soc., 14(3) (1972), 257-263. CR - T. Stokes, Domain and range operations in semigroups and rings, Comm. Algebra, 43(9) (2015), 3979-4007. CR - N. V. Subrahmanyam, Structure theory for a generalised Boolean ring, Math. Ann., 141 (1960), 297-310. CR - I. Sussman, Ideal structure and semigroup domain decomposition of associate rings, Math. Ann., 140(2) (1960), 87-93. UR - https://doi.org/10.24330/ieja.1554197 L1 - https://dergipark.org.tr/en/download/article-file/4232479 ER -