TY - JOUR T1 - Farklı Üretim Tekniklerinin PVA Esaslı Yeşil Kompozit Membranların Gaz Ayırma Özelliklerine Etkisi TT - Effect of Different Production Techniques on Gas Separation Properties of PVA Based Green Composite Membranes AU - Mutuk, Tuğba AU - Keskin, Taha Yağız AU - Aykaç Özen, Hülya PY - 2024 DA - December Y2 - 2024 DO - 10.31466/kfbd.1558555 JF - Karadeniz Fen Bilimleri Dergisi JO - KFBD PB - Giresun University WT - DergiPark SN - 2564-7377 SP - 2290 EP - 2301 VL - 14 IS - 4 LA - tr AB - Bu çalışmada polivinil alkol (PVA) esaslı ve muz lifi katkılı yeşil kompozit membranların gaz ayırma özellikleri incelenmiştir. Membran üretiminde, çevre dostu ve biyolojik olarak parçalanabilir bir polimer olan PVA kullanılmış, ana takviye malzemesi olarak ise muz lifi tercih edilmiştir. Muz lifleri atık olarak değerlendirilebilen doğal bir malzeme olup, kompozitlerin termal, mekanik ve gaz geçirgenlik özelliklerine katkıda bulunmuştur. Araştırmada döküm yöntemi ve elektrosprey biriktirme yöntemi olmak üzere iki farklı üretim yöntemi kullanılmıştır. Bu yöntemlerin, PVA esaslı kompozit membranların mikroyapısına ve gaz ayırma performansına olan etkileri karşılaştırılmıştır. Gaz geçirgenliği ve CO2/N2 gaz ayrımı testlerinde muz lifinin katkı oranının (ağ.%1, %3, %5) ve üretim yönteminin etkisi analiz edilmiştir. Elektrosprey biriktirme yöntemiyle üretilen membranların, özellikle ağ.%5 muz lifi katkılı kompozit membranların, CO2 geçirgenlik değerlerinin en yüksek olduğunu göstermiştir. Ayrıca, elektrosprey biriktirme yöntemiyle elde edilen membranların, döküm yöntemine göre daha gözenekli bir yapıya sahip olduğu ve bu nedenle gaz geçirgenliğini artırdığı tespit edilmiştir. Ancak, seçicilik açısından bakıldığında, en yüksek CO2/N2 seçiciliği saf PVA membranlarda elde edilmiştir. Muz lifi katkısının artırılması, gözenek yapısını iyileştirirken, seçiciliği olumsuz etkileyebilmektedir. Bu çalışma, karbon yakalama teknolojilerinde sürdürülebilir ve doğal malzeme kullanımı açısından önemli katkılar sunmuş ve PVA esaslı yeşil kompozitlerin gelecekteki endüstriyel uygulamalar için potansiyel taşıdığını ortaya koymuştur. KW - Elektrosprey biriktirme KW - Yeşil kompozit KW - Membran KW - Gaz ayrımı N2 - In this study, the gas separation properties of polyvinyl alcohol (PVA) based and banana fiber added green composite membranes were investigated. PVA, which is an environmentally friendly and biodegradable polymer, was used in membrane production, and banana fiber was preferred as the main reinforcement material. Banana fibers are a natural material that can be utilized as waste and contributed to the thermal, mechanical and gas permeability properties of the composites. Two different production methods were used in the study, namely the casting method and the electrospray deposition method. The effects of these methods on the microstructure and gas separation performance of PVA based composite membranes were compared. Gas permeability and CO2/N2 separation tests, the banana fiber contribution ratio (wt. 1%, 3%, 5%) and the production method were analyzed. It was shown that the membranes produced by the electrospray method, especially the composite membranes with wt. 5% banana fiber added, had the highest CO2 permeability values. In addition, it was determined that the membranes obtained by the electrospray method had a more porous structure compared to the casting method and therefore increased gas permeability. However, in terms of selectivity, the highest CO2/N2 selectivity was obtained in pure PVA membranes. Increasing the banana fiber content improves the pore structure, but may negatively affect selectivity. This study has made significant contributions in terms of sustainable and natural material use in carbon capture technologies and has revealed that PVA-based green composites have potential for future industrial applications. CR - Abdul Mannan, H., Mukhtar, H., Shima Shaharun, M., Roslee Othman, M., & Murugesan, T. (2016). Polysulfone/poly(ether sulfone) blended membranes for CO 2 separation. Journal of Applied Polymer Science, 133(5). https://doi.org/10.1002/app.42946 CR - Ahmadi, R., Ardjmand, M., Rashidi, A., & Rafizadeh, M. (2020). High performance novel nanoadsorbents derived - natural cellulose fibers for superior CO 2 adsorption and CO 2 / CH 4 separation. Energy Sources, Part a: Recovery, Utilization, and Environmental Effects, 1–19. https://doi.org/10.1080/15567036.2020.1845878 CR - Baker, R. W., & Low, B. T. (2014). Gas Separation Membrane Materials: A Perspective. Macromolecules, 47(20), 6999–7013. https://doi.org/10.1021/ma501488s CR - Beckermann, G. W., & Pickering, K. L. (2008). Engineering and evaluation of hemp fibre reinforced polypropylene composites: Fibre treatment and matrix modification. Composites Part a: Applied Science and Manufacturing, 39(6), 979–988. https://doi.org/10.1016/j.compositesa.2008.03.010 CR - Bledzki, A. (1999). Composites reinforced with cellulose based fibres. Progress in Polymer Science, 24(2), 221–274. https://doi.org/10.1016/S0079-6700(98)00018-5 CR - Chen, H., Dai, F., Wang, M., Yan, X., Ke, Z., Chen, C., . . . Yu, Y. (2022). Preparation and gas separation properties of spirobisbenzoxazole-based polyimides. European Polymer Journal, 173, 111231. https://doi.org/10.1016/j.eurpolymj.2022.111231 CR - DOE/EIA-0383 (2008). Annual Energy Outlook: Report. CR - Douna, I., Farrukh, S., Hussain, A., Salahuddin, Z., Noor, T., Pervaiz, E., . . . Fan, X. F. (2022). Experimental investigation of polysulfone modified cellulose acetate membrane for CO2/H2 gas separation. Korean Journal of Chemical Engineering, 39(1), 189–197. https://doi.org/10.1007/s11814-021-0900-7 CR - Duan, K., Wang, J., Zhang, Y., & Liu, J. (2019). Covalent organic frameworks (COFs) functionalized mixed matrix membrane for effective CO2/N2 separation. Journal of Membrane Science, 572, 588–595. https://doi.org/10.1016/j.memsci.2018.11.054 CR - Fang, J., Niu, H., Lin, T., & Wang, X. (2008). Applications of electrospun nanofibers. Science Bulletin, 53(15), 2265–2286. https://doi.org/10.1007/s11434-008-0319-0 CR - Figueroa, J. D., Fout, T., Plasynski, S., McIlvried, H., & Srivastava, R. D. (2008). Advances in CO2 capture technology—The U.S. Department of Energy's Carbon Sequestration Program. International Journal of Greenhouse Gas Control, 2(1), 9–20. https://doi.org/10.1016/S1750-5836(07)00094-1 CR - Freeman, B. D. (1999). Basis of Permeability/Selectivity Tradeoff Relations in Polymeric Gas Separation Membranes. Macromolecules, 32(2), 375–380. https://doi.org/10.1021/ma9814548 CR - Gu, J., Li, J. J., Sun, Y. P., Zhang, L., & Chen, H. (2013). Progresses in the modification and application of poly (vinyl alcohol) membrane.: Chemical Industry and Engineering Progress,, 32(5), 1074-1080. CR - Haszeldine, R. S., Flude, S., Johnson, G., & Scott, V. (2018). Negative emissions technologies and carbon capture and storage to achieve the Paris Agreement commitments. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 376(2119). https://doi.org/10.1098/rsta.2016.0447 CR - IPCC (2005). Carbon Dioxide Capture and Storage ([Summary version]). Cambridge: Cambridge UP. CR - Kabir, M. M., Wang, H., Lau, K. T., Cardona, F., & Aravinthan, T. (2012). Mechanical properties of chemically-treated hemp fibre reinforced sandwich composites. Composites Part B: Engineering, 43(2), 159–169. https://doi.org/10.1016/j.compositesb.2011.06.003 CR - Kalia, S., Kaith, B. S., & Kaur, I. (2009). Pretreatments of natural fibers and their application as reinforcing material in polymer composites—A review. Polymer Engineering & Science, 49(7), 1253–1272. https://doi.org/10.1002/pen.21328 CR - Khan, A. L., Li, X., Ilyas, A., Raza, M. T., & Vankelecom, I. F.J. (2016). Novel sulfonated and fluorinated PEEK membranes for CO2 separation. Separation and Purification Technology, 167, 1–5. https://doi.org/10.1016/j.seppur.2016.04.037 CR - Kumar, V., Chakraborty, P., Janghu, P., Umesh, M., Sarojini, S., Pasrija, R., . . . Sivalingam, A. M. (2023). Potential of banana based cellulose materials for advanced applications: A review on properties and technical challenges. Carbohydrate Polymer Technologies and Applications, 6, 100366. https://doi.org/10.1016/j.carpta.2023.100366 CR - Lai, C.-L., Chen, J.-T., Fu, Y.-J., Liu, W.-R., Zhong, Y.-R., Huang, S.-H., . . . Lee, K.-R. (2015). Bio-inspired cross-linking with borate for enhancing gas-barrier properties of poly(vinyl alcohol)/graphene oxide composite films. Carbon, 82, 513–522. https://doi.org/10.1016/j.carbon.2014.11.003 CR - Lee, B., Kamiya, N., Machida, S., Yamagata, Y., Horie, K., & Nagamune, T. (2003). Fabrication of a protein film by electrospray deposition method and investigation of photochemical properties by persistent spectral hole burning. Biomaterials, 24(12), 2045–2051. https://doi.org/10.1016/S0142-9612(02)00637-3 CR - Markusson, N., & Chalmers, H. (2013). Characterising CCS learning: The role of quantitative methods and alternative approaches. Technological Forecasting and Social Change, 80(7), 1409–1417. https://doi.org/10.1016/j.techfore.2011.12.010 CR - Mondal, A., & Mandal, B. (2014). CO2 separation using thermally stable crosslinked poly(vinyl alcohol) membrane blended with polyvinylpyrrolidone/polyethyleneimine/tetraethylenepentamine. Journal of Membrane Science, 460, 126–138. https://doi.org/10.1016/j.memsci.2014.02.040 CR - Mutuk, T., Arpacıoğlu, K., Alışır, S., & Demir, G. (2023). Thermal and mechanical evaluation of natural fibers reinforced gypsum plaster composite. Journal of Metals, Materials and Minerals, 33(1), 116–123. https://doi.org/10.55713/jmmm.v33i1.1669 CR - Özen, H. A., & Ozturk, B. (2019). Gas separation characteristic of mixed matrix membrane prepared by MOF-5 including different metals. Separation and Purification Technology, 211, 514-521. CR - Özen, H. A., & Öztürk, B. (2020). Hydrogen Permeability of Mixed Matrix Membranes Containing Metal Doped MOF-5. Emerging Materials Research, 9(1), 1–4. https://doi.org/10.1680/jemmr.18.00090 CR - Pickering, K. L., Beckermann, G. W., Alam, S. N., & Foreman, N. J. (2007). Optimising industrial hemp fibre for composites. Composites Part a: Applied Science and Manufacturing, 38(2), 461–468. https://doi.org/10.1016/j.compositesa.2006.02.020 CR - Razmgar, K., & Nasiraee, M. (2022). Polyvinyl alcohol ‐based membranes for filtration of aqueous solutions: A comprehensive review. Polymer Engineering & Science, 62(1), 25–43. https://doi.org/10.1002/pen.25846 CR - Sapalidis, A. A. (2020). Porous Polyvinyl Alcohol Membranes: Preparation Methods and Applications. Symmetry, 12(6), 960. https://doi.org/10.3390/sym12060960 CR - Shervani, S., Tansug, L. P., & Tezel, F. H. (2024). Microporous Adsorbent-Based Mixed Matrix Membranes for CO2/N2 Separation. Energies, 17(8), 1927. https://doi.org/10.3390/en17081927 CR - Shibata, S., Cao, Y., & Fukumoto, I. (2005). Press forming of short natural fiber-reinforced biodegradable resin: Effects of fiber volume and length on flexural properties. Polymer Testing, 24(8), 1005–1011. https://doi.org/10.1016/j.polymertesting.2005.07.012 CR - Singh, J., & Dhar, D. W. (2019). Overview of Carbon Capture Technology: Microalgal Biorefinery Concept and State-of-the-Art. Frontiers in Marine Science, 6. https://doi.org/10.3389/fmars.2019.00029 CR - Türkiye İstatistik Kurumu, T. (2023). Sera Gazı Emisyon İstatistikleri, 1990-2021: Alıntı: https://data.tuik.gov.tr/Bulten/Index?p=Sera-Gazi-Emisyon-Istatistikleri-1990-2021-49672. CR - Weng, T.-H., Tseng, H.-H., & Wey, M.-Y. (2010). Fabrication and characterization of poly(phenylene oxide)/SBA-15/carbon molecule sieve multilayer mixed matrix membrane for gas separation. International Journal of Hydrogen Energy, 35(13), 6971–6983. https://doi.org/10.1016/j.ijhydene.2010.04.024 CR - Yılmaz, S. Y., Özen, H. A., & Geyikçi, F. (2023). Experimental and factorial study on gas separation properties of PLA-based green composite membranes. Korean Journal of Chemical Engineering, 40(12), 2965–2974. https://doi.org/10.1007/s11814-023-1557-1 UR - https://doi.org/10.31466/kfbd.1558555 L1 - https://dergipark.org.tr/en/download/article-file/4251595 ER -