TY - JOUR T1 - A New Kibria-Lukman-Type Estimator for Poisson Regression Models AU - Çiçek, Cemal AU - Akay, Kadri Ulaş PY - 2024 DA - December Y2 - 2024 DO - 10.26650/acin.1558583 JF - Acta Infologica JO - ACIN PB - Istanbul University WT - DergiPark SN - 2602-3563 SP - 199 EP - 212 VL - 8 IS - 2 LA - en AB - One of the most important models for the analysis of count data is the Poisson Regression Model (PRM). The parameter estimates of the PRM are obtained by the Maximum Likelihood Estimator (MLE). However, MLE is adversely affected in the presence of multicollinearity, which is known as the approximately linear relationship between the explanatory variables. Many shrinkage estimators have been proposed to reduce the effects of multicollinearity in PRMs. As an alternative to other biased estimators that are already in use in PRMs, we presented a novel estimator in this paper that is based on the Kibria-Lukman estimator. The superiority of the proposed new biased estimator over existing biased estimators is given by the asymptotic matrix mean square error. Furthermore, two separate Monte Carlo simulation studies are conducted to investigate the performance of the proposed biased estimators. Finally, real data is used to examine the superiority of the proposed estimator. KW - Mean squared error KW - multicollinearity KW - poisson liu estimator KW - poisson regression KW - poisson ridge estimator CR - Akay, K. U., Ertan, E., & Erkoç, A. (2023). A New biased estimator and variations based on the Kibria Lukman Estimator. Istanbul Journal of Mathematics, 1(2), 74-85. google scholar CR - Akay, K. U., & Ertan, E., (2022). A new Liu-type estimator in Poisson regression models. Hacet JMath Stat, 51 (5), 1484-1503. google scholar CR - Aladeitan, B. B., Adebimpe, O., Lukman, A. F., Oludoun, O., & Abiodun, O. E. (2021). Modified Kibria-Lukman (MKL) estimator for the Poisson Regression Model: application and simulation. F1000Research, 10. google scholar CR - Alanaz, M. M., & Algamal, Z. Y., (2018). Proposed methods in estimating the ridge regression parameter in Poisson regression model. Electronic Journal of Applied Statistical Analysis, 11(2), 506-515. google scholar CR - Algamal, Z. Y. (2018). Biased estimators in Poisson regression model in the presence of multicollinearity: A subject review. Al-Qadisiyah Journal for Administrative and Economic Sciences, 20(1), 37-43. google scholar CR - Alheety, M. I., Qasim, M., Mânsson, K., & Kibria, B. G. (2021). Modified almost unbiased two-parameter estimator for the Poisson regression model with an application to accident data. SORT, 121-142. google scholar CR - Alkhateeb, A., & Algamal, Z. (2020). Jackknifed Liu-type estimator in Poisson regression model. Journal of The Iranian Statistical Society, 19(1), 21-37. google scholar CR - Amin, M., Akram, M. N., & Amanullah, M. (2022). On the James-Stein estimator for the Poisson regression model. Communications in Statistics-Simulation and Computation, 51(10), 5596-5608. google scholar CR - Amin, M., Akram, M. N., & Kibria, B. G. (2021). A new adjusted Liu estimator for the Poisson regression model. Concurrency and Computation: Practice and Experience, 33(20), e6340. google scholar CR - Alrweili, H. (2024). Kibria-Lukman Hybrid Estimator for Handling Multicollinearity in Poisson Regression Model: Method and Application. International Journal of Mathematics and Mathematical Sciences, 2024(1), 1053397. google scholar CR - Asar, Y., & Genç, A. (2018). A new two-parameter estimator for the poisson regression model. Iranian Journal of Science and Technology, Transactions A: Science, 42(2), 793-803. google scholar CR - Çetinkaya, M. K., & Kaçıranlar, S. (2019). Improved two-parameter estimators for the negative binomial and Poisson regression models. Journal of Statistical Computation and Simulation, 89(14), 2645-2660. google scholar CR - Dawoud, I., Abonazel, M. R., & Awwad, F. A. (2022). Generalized Kibria-Lukman estimator: Method, simulation, and application. Frontiers in Applied Mathematics and Statistics, 8, 880086. google scholar CR - Dunn, P. K., & Smyth, G. K. (2018). Generalized Linear Models With Examples in R. Springer, New York, NY. google scholar CR - Ertan, E., & Akay, K. U. (2023). A new class of Poisson-ridge-type estimator. Scientific Reports, 13(1), 4968. google scholar CR - Farebrother, R.W. (1976). Further results on the mean square error of ridge regression. JR Stat Soc B, (28), 248-250. google scholar CR - Hardin, J. W., & Hilbe, J. M. (2018). Generalized linear models and extensions. Fourth edition. Stata press. google scholar CR - Hilbe, J. M. (2014). Modeling Count Data; Cambridge University Press: Cambridge. google scholar CR - Hoerl, A.E., & Kennard, R.W. (1970). Ridge regression: biased estimation for nonorthogonal problems. Technometrics, 12(1), 55-67. google scholar CR - Jadhav, N. H. (2022). A new linearized ridge Poisson estimator in the presence of multicollinearity. Journal of Applied Statistics, 49(8), 2016-2034. google scholar CR - Kibria, B. M. G., Mânsson, K., & Shukur, G. (2013). Some ridge regression estimators for the zero-inflated Poisson model. Journal of Applied Statistics, 40(4), 721-735. google scholar CR - Kibria B. M. G., Mânsson K., & Shukur, G. (2015). A simulation study of some biasing parameters for the ridge type estimation of Poisson regression. Commun Stat Simul Comput, 44(4), 943-957. google scholar CR - Kurnaz, F. S., & Akay, K. U. (2015). A new Liu-type estimator. Stat Papers, 56, 495-517. google scholar CR - Liu, K. (1993). A new class of biased estimate in linear regression. Commun Stat Theory Methods 22(2): 393-402. google scholar CR - Liu, K. (2003). Using Liu-type estimator to combat collinearity. Commun Stat Theory Methods 32(5):1009-1020. google scholar CR - Lukman, A. F., Adewuyi, E., Mânsson, K., & Kibria, B. G. (2021). A new estimator for the multicollinear Poisson regression model: simulation and application. Scientific Reports, 11(1), 3732. google scholar CR - Lukman, A. F., Aladeitan, B., Ayinde, K., & Abonazel, M. R. (2022). Modified ridge-type for the Poisson regression model: simulation and application. Journal of Applied Statistics, 49(8), 2124-2136. google scholar CR - Lukman, A. F., Allohibi, J., Jegede, S. L., Adewuyi, E. T., Oke, S., & Alharbi, A. A. (2023). Kibria-Lukman-Type Estimator for Regularization and Variable Selection with Application to Cancer Data. Mathematics, 11(23), 4795. google scholar CR - Mânsson, K., & Shukur, G. (2011). A Poisson ridge regression estimator. Economic Modelling, 28(4), 1475-1481. google scholar CR - Mânsson, K., Kibria, B. G., Sjolander, P., & Shukur, G. (2012). Improved Liu estimators for the Poisson regression model. International Journal of Statistics and Probability, 1(1), 2-6. google scholar CR - Mânsson, K., & Kibria, B. G. (2020). Estimating the Unrestricted and Restricted Liu Estimators for the Poisson Regression Model: Method and Application. Computational Economics, 1-16. google scholar CR - McDonald, G. C., & Galarneau, D. I. (1975) A Monte Carlo evaluation of some ridge-type estimators. JAm Stat Assoc, 70(350), 407-416. google scholar CR - Myers, R. H., Montgomery, D. C., Vining, G. G., & Robinson, T. J. (2012). Generalized linear models: with applications in engineering and the sciences, Wiley, New York. google scholar CR - Özkale, M. R., & Kaçıranlar, S. (2007). The restricted and unrestricted two-parameter estimators. Commun Stat Theory Methods, 36, 2707-2725. google scholar CR - Qasim, M., Kibria, B. M. G., Mânsson, K., & Sjölander, P. (2020a). A new Poisson-Liu Regression Estimator: method and application. Journal of Applied Statistics, 47(12), 2258-2271. google scholar CR - Qasim, M., Mânsson, K., Amin, M., Kibria, B. G., & Sjölander, P. (2020b). Biased adjusted Poisson ridge estimators-method and application. Iranian Journal of Science and Technology, Transactions A: Science, 44(6), 1775-1789. google scholar CR - Rashad, N. K., & Algamal, Z. Y. (2019). A New Ridge Estimator for the Poisson Regression Model. Iranian Journal of Science and Technology, Transactions A: Science, 43(6), 2921-2928. google scholar CR - Theobald, C.M. (1974) Generalizations of mean square error applied to ridge regression. JR Stat So B 36: 103-106. google scholar CR - Türkan, S., & Özel, G. (2016). A new modified Jackknifed estimator for the Poisson regression model. Journal of Applied Statistics, 43(10), 1892-1905. google scholar UR - https://doi.org/10.26650/acin.1558583 L1 - https://dergipark.org.tr/en/download/article-file/4251707 ER -