TY - JOUR T1 - Identifying Loci Associated with Grain Quality Traits of Landraces and Modern Varieties of Spring Bread Wheat under Conditions of Western Siberia AU - Pototskaya, Inna AU - Shepelev, Sergey AU - Morgounov, Alexey AU - Chursin, Alexandr AU - Esse, Svetlana AU - Koshkin, Mikhail AU - Shamanin, Vladimir P. PY - 2025 DA - June Y2 - 2025 JF - Turkish Journal Of Field Crops JO - TJFC PB - Society of Fields Crop Science WT - DergiPark SN - 1301-1111 SP - 10 EP - 21 VL - 30 IS - 1 LA - en AB - Landraces of wheat represent valuable genetic resources for enhancing the grain quality of modern wheat varieties. In this study, a panel comprising 94 landraces sourced from the VIR collection (Russia) and 142 wheat varieties from breeding programs of Russia and Kazakhstan was subjected to genome-wide association study (GWAS) to pinpoint genomic regions and identify candidate genes associated with grain quality traits in wheat breeding. Genotyping of the germplasm panel was conducted using the Affymetrix 25K platform, while phenotypic data for agronomic traits were collected over two growing seasons (2022 and 2023) in Western Siberia. Investigation of the genotypic structure revealed seven distinct clusters within the landraces and breeding varieties population, indicating a clear genetic differentiation among the landraces. Notably, the В genome of the landrace germplasm exhibited the highest proportion of SNP markers (41%). Based on experiment data among 294 MTAs seven unique loci were identified with a −log10(p) value >6 in the landrace collection that had significant associations with grain protein content, grain gluten, strong gluten content, gluten index, and vitreousness (AX-158572632, wsnp_Ex_c10084_16572374, BobWhite_c31129_60, AX-158586137, AX-94949506, BobWhite_c46257_130, wsnp_JG_c5646_2148382). These markers were distributed on chromosomes A, 2B, 5B, 6B, and 6D with ranged of phenotypic variation 9–26%. KW - Grain quality traits KW - GWAS KW - Landraces KW - KASIB program KW - Spring wheat CR - Adhikari, S., Kumari, J., Jacob, S. R., Prasad, P., Gangwar, O. P., Lata, C., Thakur, R., Singh, A. K., Bansal, R., Kumar, S., Bhardwaj, S. C., Kumar, S. (2022). Landraces-potential treasure for sustainable wheat improvement. Genet. Resour. Crop Evolution, 69, 499–523. https://doi.org/10.1007/s10722-021-01310-5. CR - Alemu, A., Suliman, S., Hagras, A., Thabet, S., Al-Abdallat, A., Abdelmula, A. A., Tadesse, W. (2021). Multi-model genomewide association and genomic prediction analysis of 16 agronomic, physiological and quality related traits in ICARDA spring wheat. Euphytica, 217, 205. https://doi.org/10.1007/s10681-021-02933-6. CR - Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., Buckler, E. S. (2007). TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 23(19), 2633–2635. https://doi.org/10.1093/bioinformatics/btm308. CR - Christensen, D. K., Borgen, A. (2023). Genetic Mapping of Common Bunt Resistance Gene Bt9. In: Book of Abstracts XXII International Workshop on Bunt and Smut Diseases, ed. Buerstmayr, H., Lunzer, M. 50–51. Tulln an der Donau, Austria. CR - Delaporta, S. L., Wood, J., Hicks, J. B. (1983). A plant DNA minipreparation. Version II. Plant Molecular Biology Reports, 4, 19– 21. CR - Demirel, U., Koken, I., Caliskan, M. E., Ozkan, H. (2023). Quality performance of durum wheat (Triticum durum L.) germplasm under rainfed and irrigated field conditions. Turk J Field Crops, 28(1), 102–110. ttps://doi.org/10.17557/tjfc.1258301. CR - Dinglasan, E. G., Singh., D., Shankar, M., Afanasenko, O., Platz, G., Godwin, I. D., Voss‑Fels, K. P., Hickey, L. T. (2019). Discovering new alleles for yellow spot resistance in the Vavilov wheat collection. Theoretical and Applied Genetics, 132, 149–162. https://doi.org/10.1007/s00122-018-3204-5. CR - Earl, D. A., von Holdt, B. M. (2012). STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour, 4(2), 359–361. https://doi.org/10.1007/s12686-011-9548- 7. CR - Evanno, G., Regnaut, S., Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14(8), 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x. CR - Gomez-Becerra, H., Morgounov, A., Abugalieva, A. (2006). Evaluation of yield grain stability, reliability and cultivar recommendation in spring wheat (Triticum aestivum) from Kazakhstan and Siberia. Central European Journal of Agriculture, 6, 649–660. CR - GOST ISO 21415-2-2019; Wheat Flour. Methods of Determination of Quantity and Quality of Gluten. Russian Federation: Russia, 2019. CR - GOST 34702-2020; Bakery wheat. Technical conditions. Russian Federation: Russia, 2020. CR - Hao, S., Lou, H., Wang, H., Shi, J., Liu, D., Baogerile, Tao, J., Miao, S., Pei, Q., Yu, L., Wu, M., Gao, M., Zhao, N., Dong, J., You, M., Xin, M. (2022). Genome-wide association study reveals the genetic basis of five quality traits in Chinese wheat. Front. Plant Sci., 13, 835306. https://doi.org/10.3389/fpls.2022.835306. CR - Hu, W., Gao, D., Wu, H., Liu, J., Zhang, C., Wang, J., Jiang, Z., Liu, Y., Li, D., Zhang, Y., Lu, C. (2020). Genome-wide association mapping revealed syntenic loci QFhb-4AL and QFhb5DL for Fusarium head blight resistance in common wheat (Triticum aestivum L.). BMC Plant Biology, 20, 29. https://doi.org/10.1186/s12870-019-2177-0. CR - ISO 12099:2017(E); Statistics for Performance Measurement. Animal Feeding Stuffs, Cereals and Milled Cereal Products – Guidelines for Application of Near Infrared Spectrometer. International Organization for Standardization: Switzerland, 2017. Jambuthenne, D. T., Riaz, A., Athiyannan, N., Alahmad, S., Ng, W. L, Ziems, L., Afanasenko, O., Periyannan, S. K., Aitken, E., Platz, G., Godwin, I., Voss-Fels, K. P., Dinglasan, E., Hickey, L. T. (2022). Mining the Vavilov wheat diversity panel for new sources of adult plant resistance to stripe rust. Theoretical and Applied Genetics, 135, 1355–1373. https://doi.org/10.1007/s00122-022-04037-8. CR - Jaradat, A. A. (2013). Wheat landraces: a mini review. Emirates Journal of Food and Agriculture, 25(1), 20–29. http://doi/10.9755/ejfa.v25i1.15376. CR - Kose, O. D. E., Mut, Z., Kardes, Y. M., Akay, H. (2023). Grain - bran quality parameters and agronomic traits of bread wheat cultivars. Turk J Field Crops, 28(2), 269–278. ttps://doi.org/10.17557/tjfc.1336316. CR - Kroupin, P. Yu., Divashuk M. G., Karlov G. I. (2019). Gene resources of perennial wild involved in breeding to improve wheat crop (review). Agricultural Biology, 54(3), 409–425. http://doi/10.15389/agrobiology.2019.3.409eng. CR - Liu, J., Rasheed, A., He, Z., Imtiaz, M., Arif, A., Mahmood, T., Ghafoor, A., Siddiqui, S. U., Ilyas, M. K., Wen, W., Gao, F., Xie, C., Xia, X. (2019). Genome-wide variation patterns between landraces and cultivars uncover divergent selection during modern wheat breeding. Theoretical and Applied Genetics, 132, 2509–2523. https://doi.org/10.1007/s00122-019- 03367-4. CR - Liu, S., Bai, G., Lin, M., Luo, M., Zhang, D., Jin, F., Tian, B., Trickand, H., Yan N. L. (2020). Identifcation of candidate chromosome region of Sbwm1 for Soil-borne wheat mosaic virus resistance in wheat. Scientific reports, 10, 8119. https://doi.org/10.1038/s41598-020-64993-3. CR - Leonova, I. N., Kiseleva, A. A., Berezhnaya, A. A., Stasyuk A. I., Likhenko I. E., Salina, E. A. (2022). Identification of QTLs for grain protein content in russian spring wheat varieties. Plants, 11(3), 437. https://doi.org/10.3390/plants11030437. CR - Leonova, I. N., Ageeva, E. V. (2022). Localization of the quantitative trait loci related to lodging resistance in spring bread wheat (Triticum aestivum L.). Vavilov Journal of Genetics and Breeding, 26(7), 675–683. https://doi.org/10.18699/VJGB-22-82. CR - Lopes, M. S., El-Basyoni, I., Baenziger, P. S., Singh, S., Royo, С., Ozbek, K., C., Aktas, H., Ozer, E., Ozdemir, F., Manickavelu, A., Ban, T., Vikram, P. (2015). Exploiting genetic diversity from landraces in wheat breeding for adaptation to climate change. Journal of Experimental Botany, 66(12), 3477–3486. https://doi.org/10.1093/jxb/erv122. CR - Ma, J., Lin, Y., Tang, S., Duan, S., Wang, Q., Wu, F., Li, C., Jiang, X., Zhou, K., Liu, Y. (2020). A Genome-Wide Association Study of Coleoptile Length in Different Chinese Wheat Landraces. Frontiers in Plant Science, 11, 677. https://doi.org/10.3389/fpls.2020.00677. CR - Marone, D., Russo, M. A., Mores, A., Ficco, D. B. M., Laidò, G., Mastrangelo, A. M., Borrelli, G. M. (2021). Importance of Landraces in Cereal Breeding for Stress Tolerance. Plants, 10(7), 1267. https://doi.org/10.3390/plants10071267. CR - Methodical instructions. Exploring the wheat collection. (1985). ed. Dorofeev, V. F. VIR, Leningrad. CR - Mitrofanova, O. P., Strelchenko, P. P., Konarev, A.V., Balfourier, F. (2009). Genetic Differentiation of Hexaploid Wheat Inferred from Analysis of Microsatellite Loci. Russian Journal of Genetics, 45(11), 1351–1359. https://doi.org/10.1134/S102279540911009X. CR - Mitrofanova, O. P. (2012). Wheat genetic resources in Russia: current status and prebreeding studies. Russian Journal of Genetics, 2, 277–285. https://doi.org/10.1134/s2079059712040077. CR - Morgounov, A., Pozherukova, V., Kolmer, J., Gultyaeva, E., Abugalieva, A., Chudinov, V., Kuzmin, O., Rasheed, A., Rsymbetov, A., Shepelev, S., Ydyrys, A., Yessimbekova, M., Shamanin, V. (2020). Genetic basis of spring wheat resistance to leaf rust (Puccinia triticina) in Kazakhstan and Russia. Euphitica, 216, 170. https://doi.org/10.1007/s10681-020-02701-y. CR - Morgounov, A., Babkenov, A., Ben, C., Chudinov, V., Dolinny, Y., Dreisigacker, S., Fedorenko, E., Gentzbittel, L., Rasheed, A., Savin, T., Shepelev, S., Zhapayev, R., Shamanin, V. (2024). Molecular markers help with breeding for agronomic traits of spring wheat in Kazakhstan and Siberia, Genes, 15(1), 86. https://doi.org/10.3390/genes15010086. CR - Pascual, L., Ruiz, M., López-Fernández, M., Pérez-Peña, H., Benavente, E., Vázquez, J. F., Sansaloni, C., Giraldo P. (2020). Genomic analysis of Spanish wheat landraces reveals their variability and potential for breeding. BMC Genomics, 21, 122. https://doi.org/10.1186/s12864-020-6536-x. CR - Pritchard, J. K., Stephens, M., Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155(2), 945–959. https://doi.org/10.1093/genetics/155.2.945. CR - Phan, H. T. T., Rybak, K., Bertazzoni, S., Furuki, E., Dinglasan, E., Hickey, L. T., Oliver, R. P., Tan, K.-C. (2018). Novel sources of resistance to Septoria nodorum blotch in the Vavilov wheat collection identified by genome-wide association studies. Theoretical and Applied Genetics, 131, 1223–1238. https://doi.org/10.1007/s00122-018-3073-y. CR - Rahimi, Y., Bihamta, M. R., Taleei, A., Alipour, H., Ingvarsson, P. K. (2019). Genome-wide association study of agronomic traits in bread wheat reveals novel putative alleles for future breeding programs. BMC Plant Biology, 19, 541. https://doi.org/10.1186/s12870-019-2165-4. CR - Rasheed, A., Xia, X. C., Mahmood, T., Quraishi, U. M., Aziz, A., Bux, H., Mahmood, Z., Mirza, J. I., Mujeeb-Kazi, A., He, Z. H. (2016). Comparison of economically important loci in landraces and improved wheat cultivars from Pakistan. Crop Science, 56, 1–15. https://doi.org/10.2135/cropsci2015.01.0015. CR - Reif, J. C., Zhang, P., Dreisigacker, S., Warburton, M. L., van Ginkel, M., Hoisington, D., Bohn, M., Melchinger A. E. (2005). Wheat genetic diversity trends during domestication and breeding. Theoretical and Applied Genetics, 110, 859–864. https://doi.org/10.1007/s00122-004-1881-8. CR - Riaz, A., Hathorn, A., Dinglasan, E., Ziems, L., Richard, C., Singh, D., Mitrofanova, O., Afanasenko, O., Aitken, E., Godwin, I., Hickey L. (2017). Into the vault of the Vavilov wheats: old diversity for new alleles. Genetic Resources and Crop Evolution, 64, 531–544. https://doi.org/10.1007/s10722-016-0380-5. CR - Rufo, R., Alvaro, F., Royo, C., Soriano, J. M. (2019). From landraces to improved cultivars: Assessment of genetic diversity and population structure of Mediterranean wheat using SNP markers. PLoS ONE, 14(7), e0219867. https://doi.org/10.1371/journal.pone.0219867 CR - Ruud, A.K., Lillemo, M. (2018). Diseases affecting wheat: Septoria nodorum blotch. In: Integrated disease management of wheat and barley, ed. Oliver, R.P. Burleigh Dodds Science Publishing Ltd. Cambridge, UK. CR - Sallam, A., Dawood, M. F. A., Jarquín, D., Mohamed, E. A., Hussein, M. Y., Borner, A., Ahmed, A. А. M. (2024). Genome‐wide scanning to identify and validate single nucleotide polymorphism markers associated with drought tolerance in spring wheat seed-lings. The Plant Genome, 17. https://doi.org/10.1002/tpg2.20444. CR - Shvachko, N. A., Solovyova, M. V., Rozanova, I. V., Kibkalo, I. A., Kolesova, M. A., Brykova, A. N., Andreeva, A. S., Zuev, E. V., Borner A., Khlestkina, E. K. (2024). Mining of QTLs for Spring Bread Wheat Spike Productivity by Comparing Spring Wheat Cultivars Released in Different Decades of the Last Century. Plants, 13(8), 1081. https://doi.org/10.3390/plants13081081. CR - Tyryshkin, M. A., Zeleneva, L. G., Brykova, Y. V., Kudryavtseva, A. N., Loseva, E. Y., Akhmedov, V. A., Shikhmuradov, A. Z., Zuev, E. V. (2022). Long-Term Multilocal Monitoring of Leaf Rust Resistance in the Spring Bread Wheat Genetic Resources from Institute of Plant Genetic Resources (VIR). Agronomy, 12(2), 242. https://doi.org/10.3390/agronomy12020242. UR - https://dergipark.org.tr/en/pub/tjfc/issue//1559476 L1 - https://dergipark.org.tr/en/download/article-file/4255677 ER -