TY - JOUR T1 - From Traditional to Modern: A Narrative Review of AI-Based Approaches of Cardiac Arrhythmia Diagnosis AU - Bhavsar, Jill AU - Gupta, Vasu AU - Kanagala, Gautham AU - Bhavanam, Sravani AU - Garg, Shreya AU - Mendpara, Vaidehi AU - Aggarwal, Kanishk AU - Anamika, Fnu AU - Jain, Rohit PY - 2025 DA - July Y2 - 2025 DO - 10.46310/tjim.1559779 JF - Turkish Journal of Internal Medicine JO - Turk J Int Med PB - Nizameddin KOCA WT - DergiPark SN - 2687-4245 SP - 90 EP - 97 VL - 7 IS - 3 LA - en AB - Cardiac arrhythmia is one of the leading causes of morbidity and mortality in the general population, and thus, early detection of arrhythmia is critical for improving patient outcomes. While the 12-lead ECG was traditionally used as the primary diagnostic tool for arrhythmia, its manual interpretation can be challenging, even for experienced cardiologists. However, with the growing understanding of cardiac arrhythmia, artificial intelligence (AI) algorithms have been developed to analyze ECGs to identify abnormalities and predict the risk of developing arrhythmia. AI can be used for real-time ECG monitoring through wearable devices to alert patients or healthcare providers if an arrhythmia is detected. It has the potential to decrease reliance on cardiologists, shorten hospital stays, and assist patients in rural hospitals with limited access to medical professionals. Although AI is known for its ability to accurately interpret large amounts of data quickly, there are concerns about its use in the medical field. Considering the crucial differences between AI and humans, we discuss the strengths and limitations of using AI to diagnose cardiac arrhythmias. KW - Artificial intelligence; KW - cardiac arrythmias KW - ECG KW - Machine learning KW - Deep learning CR - Heart disease facts. Centers for Disease Control and Prevention. https://www.cdc.gov/heartdisease/facts.htm#:~:text=Heart%20disease%20is%20the%20l eading,groups%20in%20the%20United%20States.&text=One%20person%20dies%20ev ery%2034,United%20States%20from%20cardiovascular%20disease. Published October 14, 2022. Accessed March 16, 2023. CR - Vaduganathan M, Mensah GA, Turco JV, Fuster V, Roth GA. The Global Burden of Cardiovascular Diseases and Risk: A Compass for Future Health. J Am Coll Cardiol. 2022;80(25):2361-2371. doi:10.1016/j.jacc.2022.11.005 CR - Desai DS, Hajouli S. Arrhythmias. [Updated 2022 Jun 11]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK558923/ CR - Kornej J, Börschel CS, Benjamin EJ, Schnabel RB. Epidemiology of Atrial Fibrillation in the 21st Century: Novel Methods and New Insights. Circ Res. 2020;127(1):4-20. doi:10.1161/CIRCRESAHA.120.316340 CR - Atrial fibrillation (2022) Centers for Disease Control and Prevention. Centers for Disease Control and Prevention. Available at: https://www.cdc.gov/heartdisease/atrial_fibrillation.htm (Accessed: February 8, 2023). CR - Foth C, Gangwani MK, Alvey H. Ventricular Tachycardia. [Updated 2022 Aug 8]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK532954/ CR - Mintz Y, Brodie R. Introduction to artificial intelligence in medicine. Minim Invasive Ther Allied Technol. 2019;28(2):73-81. doi:10.1080/13645706.2019.1575882 CR - Gupta R, Srivastava D, Sahu M, Tiwari S, Ambasta RK, Kumar P. Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Mol Divers. 2021;25(3):1315-1360. doi:10.1007/s11030-021-10217-3 CR - Kulikowski CA. Beginnings of Artificial Intelligence in Medicine (AIM): Computational Artifice Assisting Scientific Inquiry and Clinical Art - with Reflections on Present AIM Challenges. Yearb Med Inform. 2019;28(1):249-256. doi:10.1055/s-0039-1677895 CR - Kaul V, Enslin S, Gross SA. History of artificial intelligence in medicine. Gastrointest Endosc. 2020;92(4):807-812. doi:10.1016/j.gie.2020.06.040 CR - Cardiac risk calculator and assessment. Cleveland Clinic. https://my.clevelandclinic.org/health/diagnostics/17085-heart-risk-factor-calculators. Accessed March 16, 2023. CR - Weng SF, Reps J, Kai J, Garibaldi JM, Qureshi N. Can machine-learning improve cardiovascular risk prediction using routine clinical data?. PLoS One. 2017;12(4):e0174944. Published 2017 Apr 4. doi:10.1371/journal.pone.0174944 CR - Ramesh AN, Kambhampati C, Monson JR, Drew PJ. Artificial intelligence in medicine. Ann R Coll Surg Engl. 2004;86(5):334-338. doi:10.1308/147870804290 CR - Mincholé A, Camps J, Lyon A, Rodríguez B. Machine learning in the electrocardiogram. Journal of Electrocardiology. 2019;57. doi:10.1016/j.jelectrocard.2019.08.008 CR - Noseworthy PA, Attia ZI, Behnken EM, et al. Artificial intelligence-guided screening for atrial fibrillation using electrocardiogram during sinus rhythm: a prospective non-randomised interventional trial. Lancet. 2022;400(10359):1206-1212. doi:10.1016/S0140-6736(22)01637-3 CR - Luzniak K. Cost of AI in Healthcare Industry. Neoteric. https://neoteric.eu/blog/whats-the-cost-of-artificial-intelligence-in-healthcare/#:~:text=According%20to%20Analytics%20Insights%2C%20the,US%248%2C000%20and%20US% 2415%2C000. Published March 10, 2023. Accessed March 16, 2023. CR - Farhud DD, Zokaei S. Ethical Issues of Artificial Intelligence in Medicine and Healthcare. Iran J Public Health. 2021;50(11):i-v. doi:10.18502/ijph.v50i11.7600 CR - Kamga P, Mostafa R, Zafar S. The Use of Wearable ECG Devices in the Clinical Setting: a Review. Curr Emerg Hosp Med Rep. 2022;10(3):67-72. doi:10.1007/s40138-022-00248-x CR - Feeny AK, Chung MK, Madabhushi A, et al. Artificial Intelligence and Machine Learning in Arrhythmias and Cardiac Electrophysiology. Circ Arrhythm Electrophysiol. 2020;13(8):e007952. doi:10.1161/CIRCEP.119.007952 CR - Nagarajan VD, Lee SL, Robertus JL, Nienaber CA, Trayanova NA, Ernst S. Artificial intelligence in the diagnosis and management of arrhythmias. Eur Heart J. 2021;42(38):3904-3916. doi:10.1093/eurheartj/ehab544 CR - Quer G, Arnaout R, Henne M, Arnaout R. Machine Learning and the Future of Cardiovascular Care: JACC State-of-the-Art Review. J Am Coll Cardiol. 2021;77(3):300-313. doi:10.1016/j.jacc.2020.11.030 CR - Ketkar Y, Gawade S. Detection of arrhythmia using weightage-based supervised learning system for COVID-19. Intelligent Systems with Applications. 2022;16(200119):200119. doi:10.1016/j.iswa.2022.200119 CR - Wang G, Chen M, Ding Z, Li J, Yang H, Zhang P. Inter-patient ECG arrhythmia heartbeat classification based on unsupervised domain adaptation. Neurocomputing. 2021;454:339-349. doi:10.1016/j.neucom.2021.04.104 CR - Muthalaly RG, Evans RM. Applications of Machine Learning in Cardiac Electrophysiology. Arrhythm Electrophysiol Rev. 2020;9(2):71-77. doi:10.15420/aer.2019.19 CR - Ebrahimi Z, Loni M, Daneshtalab M, Gharehbaghi A. A review on deep learning methods for ECG arrhythmia classification. Expert Systems with Applications: X. 2020;7(100033):100033. doi:10.1016/j.eswax.2020.100033 CR - Ullah A, Rehman SU, Tu S, Mehmood RM, Fawad, Ehatisham-Ul-Haq M. A Hybrid Deep CNN Model for Abnormal Arrhythmia Detection Based on Cardiac ECG Signal. Sensors (Basel). 2021;21(3):951. Published 2021 Feb 1. doi:10.3390/s21030951 CR - Hassan SU, Mohd Zahid MS, Abdullah TA, Husain K. Classification of cardiac arrhythmia using a convolutional neural network and bi-directional long short-term memory. Digit Health. 2022;8:20552076221102766. Published 2022 May 26. doi:10.1177/20552076221102766 CR - Yıldırım Ö, Pławiak P, Tan RS, Acharya UR. Arrhythmia detection using deep convolutional neural network with long duration ECG signals. Comput Biol Med. 2018;102:411-420. doi:10.1016/j.compbiomed.2018.09.009 CR - Hill NR, Groves L, Dickerson C, et al. Identification of undiagnosed atrial fibrillation using a machine learning risk prediction algorithm and diagnostic testing (PULsE-AI) in primary care: cost-effectiveness of a screening strategy evaluated in a randomized controlled trial in England. J Med Econ. 2022;25(1):974-983. doi:10.1080/13696998.2022.2102355 CR - Attia ZI, Noseworthy PA, Lopez-Jimenez F, et al. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction. Lancet. 2019 Sep 7;394(10201):861-867. doi: 10.1016/S0140-6736(19)31721-0. Epub 2019 Aug 1. PMID: 31378392. CR - Hannun AY, Rajpurkar P, Haghpanahi M, et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network [published correction appears in Nat Med. 2019 Mar;25(3):530]. Nat Med. 2019;25(1):65-69. doi:10.1038/s41591-018-0268-3 CR - Kabra R, Israni S, Vijay B, Baru C, Mendu R, Fellman M, et al. Emerging role of artificial intelligence in cardiac electrophysiology. Cardiovasc Digit Health J. 2022;3(6):263–275. doi:10.1016/j.cvdhj.2022.09.001 CR - Makary MA, Daniel M. Medical error-the third leading cause of death in the US. BMJ. 2016 May 3;353:i2139. doi: 10.1136/bmj.i2139. CR - Krajcer Z. Artificial Intelligence in Cardiovascular Medicine: Historical Overview, Current Status, and Future Directions. Tex Heart Inst J. 2022 Mar 1;49(2):e207527. doi: 10.14503/THIJ-20-7527. CR - Chung CT, Lee S, King E, et al. Clinical significance, challenges and limitations in using artificial intelligence for electrocardiography-based diagnosis. Int J Arrhythmia. 2022;23(1):24. doi:10.1186/s42444-022-00075-x CR - Baek YS, Lee SC, Choi W, Kim DH. A new deep learning algorithm of 12-lead electrocardiogram for identifying atrial fibrillation during sinus rhythm. Sci Rep. 2021;11(1):12818. Published 2021 Jun 17. doi:10.1038/s41598-021-92172-5 CR - Krittanawong C, Johnson KW, Rosenson RS, et al. Deep learning for cardiovascular medicine: apractical primer. Eur Heart J. 2019;40(25):2058-2073. doi:10.1093/eurheartj/ehz056 CR - Bodini M, Rivolta MW, Sassi R. Opening the black box: interpretability of machine learning algorithms in electrocardiography. Philos Trans A Math Phys Eng Sci. 2021;379(2212):20200253. doi:10.1098/rsta.2020.0253 CR - Sanamdikar, S.T., Hamde, S.T. & Asutkar, V.G. Analysis and classification of cardiac arrhythmia based on general sparsed neural network of ECG signals. SN Appl. Sci. 2, 1244 (2020). https://doi.org/10.1007/s42452-020-3058-8 CR - Krittanawong C, Rogers AJ, Johnson KW, et al. Integration of novel monitoring devices with machine learning technology for scalable cardiovascular management. Nat Rev Cardiol. 2021;18(2):75-91. doi:10.1038/s41569-020-00445-9 CR - Sánchez de la Nava AM, Atienza F, Bermejo J, Fernández-Avilés F. Artificial intelligence for a personalized diagnosis and treatment of atrial fibrillation. Am J Physiol Heart Circ Physiol. 2021;320(4):H1337-H1347. doi:10.1152/ajpheart.00764.2020 CR - Brown G, Conway S, Ahmad M, et al. Role of artificial intelligence in defibrillators: a narrative review. Open Heart. 2022;9(2):e001976. doi:10.1136/openhrt-2022-001976 CR - Didon JP, Ménétré S, Jekova I, Stoyanov T, Krasteva V. Analyze Whilst Compressing algorithm for detection of ventricular fibrillation during CPR: A comparative performance evaluation for automated external defibrillators. Resuscitation. 2021;160:94-102. doi:10.1016/j.resuscitation.2021.01.018 CR - Weisfeldt ML, Everson-Stewart S, Sitlani C, et al. Ventricular tachyarrhythmias after cardiac arrest in public versus at home. N Engl J Med. 2011;364(4):313-321. doi:10.1056/NEJMoa1010663 CR - Cheskes S, McLeod SL, Nolan M, et al. Improving Access to Automated External Defibrillators in Rural and Remote Settings: A Drone Delivery Feasibility Study. J Am Heart Assoc. 2020;9(14):e016687. doi:10.1161/JAHA.120.016687 CR - Stavrakis S, Stoner JA, Kardokus J, Garabelli PJ, Po SS, Lazzara R. Intermittent vs. Continuous Anticoagulation theRapy in patiEnts with Atrial Fibrillation (iCARE-AF): a randomized pilot study. J Interv Card Electrophysiol. 2017;48(1):51-60. doi:10.1007/s10840-016-0192-8 UR - https://doi.org/10.46310/tjim.1559779 L1 - https://dergipark.org.tr/en/download/article-file/4256975 ER -