TY - JOUR T1 - Hankel transform of linear combination of three consecutive Catalan numbers AU - Petković, M.d. AU - Bojičić, Radica AU - Barry, Paul PY - 2025 DA - August Y2 - 2024 DO - 10.15672/hujms.1564485 JF - Hacettepe Journal of Mathematics and Statistics PB - Hacettepe University WT - DergiPark SN - 2651-477X SP - 1470 EP - 1478 VL - 54 IS - 4 LA - en AB - In this paper, we consider the Hankel determinants of the linear combination of three consecutive Catalan numbers, and then three consecutive shifted Catalan numbers. For their computing, we apply known methods based on the connections between continued fractions, orthogonal polynomials and moment-determinants. The properties of orthogonal polynomials enable us to evaluate the generating function of the corresponding sequence Hankel determinants in closed form. KW - Catalan numbers KW - shifted Catalan numbers KW - Hankel transform KW - orthogonal polynomials CR - [1] P. Barry and A. Hennessy, Notes on a Family of Riordan Arrays and Associated Integer Hankel Transforms, J. Integer Seq. 12, Article ID 09.5.3., 2009. CR - [2] M. Chamberland and C. French, Generalized Catalan numbers and generalized Hankel transformations, J. Integer Seq. 10, Article ID 07.1.1., 2007. CR - [3] A. S. Cvetkovic, P.M. Rajkovic and M. Ivkovic, Catalan Numbers, the Hankel Transform and Fibonacci Numbers, J. Integer Seq. 5, Article ID 02.1.3., 2002. CR - [4] J. Dini and P. Maroni, La multiplication d une forme linaire par une forme rationnelle. Application aux polynômes de Laguerre-Hahn, Ann. Pol. Math. 52, 175-185, 1990. CR - [5] A. Junod, Hankel determinants and orthogonal polynomials, Expo. Math. 21, 63–74, 2003. CR - [6] P. V. Krtolica, P. S. Stanimirovic and I. Stojanovic, An alternative decomposition of Catalan number, Facta Univ., Math. Inform. 33(1), 63–77, 2018. CR - [7] D. S. Kumar, CH. Suneetha and A. Chandrasekhar, Novel encryption schemes based on Catalan numbers, Int. J. Eng. Res. Appl. 2(2), 161–166, 2012. CR - [8] J.W. Layman, The Hankel Transform and Some of Its Properties, J. Integer Seq. 4, Article ID 01.1.5, 2001. CR - [9] M. Goubi, On a generalization of Catalan polynomials, Facta Univ., Math. Inform. 33(2), 163–176, 2018. CR - [10] L. Mu, Y. Wang and Y.N. Yeh, Hankel determinants of linear combinations of consecutive Catalan-like numbers, Discrete Math. 340(6), 1389-1396, 2017. CR - [11] A.O. Öztürk and F. Kaplan, Some properties of bivariate Fibonacci and Lucas quaternion polynomials, Facta Univ., Math. Inform. 35(1), 73–87, 2020. CR - [12] P.M. Rajkovic, M.D. Petkovic and P. Barry, The Hankel Transform of the Sum of Consecutive Generalized Catalan Numbers, Integral Transforms Spec. Funct. 18, 285–296, 2007. CR - [13] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, Published electronically at http://oeis.org, 2024. CR - [14] R. Stanley, Catalan Numbers, Cambridge University Press, 2015. UR - https://doi.org/10.15672/hujms.1564485 L1 - https://dergipark.org.tr/en/download/article-file/4276792 ER -