TY - JOUR T1 - Shielding Behaviour of TiO2 Reinforced Composite Materials Against 4 MeV Energy Photons and Neutrons AU - Özkan, Zübeyde AU - Gökmen, Uğur PY - 2024 DA - December Y2 - 2024 DO - 10.54287/gujsa.1565477 JF - Gazi University Journal of Science Part A: Engineering and Innovation JO - GU J Sci, Part A PB - Gazi University WT - DergiPark SN - 2147-9542 SP - 722 EP - 731 VL - 11 IS - 4 LA - en AB - In order to eliminate or minimize the possible negative effects that may arise due to the use of increased artificial radiation, the radiation permeability properties of Al 6082 alloy material, Al 6082+5% TiO2, Al+15% TiO2, and Al 6082+25% TiO2 metal matrix composite materials against 4 MeV fast neutron and gamma radiation were analyzed in the NGCal program. Mass attenuation coefficient (MAC), mean free path (MFP), linear attenuation coefficient (LAC), tenth value layer (TVL), and half value layer (HVL) and parameters were analyzed for both fast neutron and gamma radiation. As a result of the analysis of 4 MeV energy fast neutron and gamma radiation, the linear attenuation values of the material against both fast neutron and photon increased depending on the increasing reinforcement ratio, while the half value layer, tenth value layer and mean free path values decreased. While the LAC values of Al 6082, Al 6082+5% TiO2, Al+15% TiO2, Al 6082+25% TiO2 materials against fast neutrons vary between approximately 0.00074 cm-1 and 0.0173 cm-1, their LAC values against photons vary between 0.084 cm-1 and 0.96 cm-1. KW - Al 6068 KW - TiO2 KW - Gamma Shielding KW - Fast Neutron Shielding CR - Akman, F. Ozkan, I. Kaçal, M. R. Polat, H. Issa, S. A. M. Tekin, H. O. & Agar, O. (2021). Shielding features, to non-ionizing and ionizing photons, of FeCr-based composites. Applied Radiation and Isotopes, 167, 109470. https://doi.org/10.1016/j.apradiso.2020.109470 CR - Aldawood, S., Asemi, N. N., Kassim, H., Aziz, A. A., Saeed, W. S., & Al-Odayni, A.-B. (2024). Gamma radiation shielding by titanium alloy reinforced by polymeric composite materials. Journal of Radiation Research and Applied Sciences, 17(1), 100793. https://doi.org/10.1016/j.jrras.2023.100793 CR - Alım, B., Ozpolat, O. F., Sakar, E., Han, I., Arslan, I., Singh, V. P., & Demir, L. (2022). Precipitation hardening stainless steels: potential use radiation shielding materials. Radiation Physics and Chemistry, 194, 110009. https://doi.org/10.1016/j.radphyschem.2022.110009 CR - Almuqrin, A., Tijani, S. A., Al-Ghamdi, A., Alhuzaymi, T., & Alotiby, F. (2023). Radiation shielding properties of high-density polyethylene (C2H4)/ molybdenum III oxide (MoO3) polymer composites for dental diagnostic applications. Journal of Radiation Research and Applied Sciences, 16(4), 100681. https://doi.org/10.1016/j.jrras.2023.100681 CR - Chang, Q., Guo, S., & Zhang, X. (2023). Radiation shielding polymer composites: Ray-interaction mechanism, structural design, manufacture and biomedical applications. Materials & Design, 233, 112253. https://doi.org/10.1016/j.matdes.2023.112253 CR - Eke, C. (2024). The role of WO3 on the optical and radiation attenuation characteristics of ZnO–Na2O–B2O3 glasses. Radiation Physics and Chemistry, 224, 112036. https://doi.org/10.1016/j.radphyschem.2024.112036 CR - Gökçe, H. S., Güngör, O., & Yılmaz, H. (2021). An online software to simulate the shielding properties of materials for neutrons and photons: NGCal. Radiation Physics and Chemistry, 185, 109519. https://doi.org/10.1016/j.radphyschem.2021.109519 CR - Huo, H., Lu, Y., Zhang, H., & Zhong, G. (2024). Sm2O3 micron plates/B4C/HDPE composites containing high specific surface area fillers for neutron and gamma-ray complex radiation shielding. Composites Science and Technology, 251, 110567. https://doi.org/10.1016/j.compscitech.2024.110567 CR - Huwayz, M. A., Basha, B., Alalawi, A., Alrowaili, Z. A. Sriwunkum, C., Alsaiari, N. S., & Al-Buriahi, M. S. (2024). Influence of BaO addition on gamma attenuation and radiation shielding performance of SiO2-B2O3-SrO-ZrO2 glasses. Journal of Radiation Research and Applied Sciences, 17(4), 101119. https://doi.org/10.1016/j.jrras.2024.101119 CR - Kavun, Y., Kerli, S., Eskalen, H., & Kavgacı, M. (2022). Characterization and nuclear shielding performance of Sm doped In₂O₃ thin films. Radiation Physics and Chemistry, 194, 110014. https://doi.org/10.1016/j.radphyschem.2022.110014 CR - Kılıçoglu, O., & Tekin, H. O. (2020). Bioactive glasses with TiO2 additive: behavior characterization against nuclear radiation and determination of buildup factors. Ceramics International, 46(8), 10779-10787. https://doi.org/10.1016/j.ceramint.2020.01.088 CR - Jandaghian, B., Dastjerdi, M. H. C., & Mokhtari, J. (2024). Characterization of neutronic parameters and radiation shielding design for an aqueous homogeneous reactor. Nuclear Engineering and Design, 417, 112832. https://doi.org/10.1016/j.nucengdes.2023.112832 CR - Juhim, F., Chee, F. P., Awang, A., Moh, P. Y., Salleh, K. A. M., Ibrahim, S., Dayou, J., Alalawi, A., & Al-Buriahi, M. S. (2023). Study of gamma radiation shielding on tellurite glass containing TiO2 and Al2O3 nanoparticles. Heliyon, 9(11), e22529. https://doi.org/10.1016/j.heliyon.2023.e22529 CR - Mahmoud, K. A., Binmujlli, M., Marashdeh, M., Sayyed, M. I., Aljaafreh, M. J., Akhdar, H., Alhindawy, I. G. (2024). Comprehensive analysis of the effects of Mo and Co on the synthesis, structural, and radiation-shielding properties of TiO2 based composites. Progress in Nuclear Energy, 169, 105105. https://doi.org/10.1016/j.pnucene.2024.105105 CR - Nafee, S., Tijani, S. A., Al-Hadeethi, Y., & Hussein, M. A. (2024). Radiation shielding potential of cellulose acetate-CdO-ZnO polymer composites in comparison with concrete and gypsum. Radiation Physics and Chemistry, 225, 112145. https://doi.org/10.1016/j.radphyschem.2024.112145 CR - Piotrowski, T. (2021). Neutron shielding evaluation of concretes and mortars: A review. Construction and Building Materials, 277, 122238. https://doi.org/10.1016/j.conbuildmat.2020.122238 CR - Reda, S. M., & Saleh, H. M. (2021). Calculation of the gamma radiation shielding efficiency of cement-bitumen portable container using MCNPX code. Progress in Nuclear Energy, 142, 104012. https://doi.org/10.1016/j.pnucene.2021.104012 UR - https://doi.org/10.54287/gujsa.1565477 L1 - https://dergipark.org.tr/en/download/article-file/4280946 ER -