TY - JOUR T1 - (∆_v^m )_u-Statistical Boundedness and Convergence of Order 𝛂 TT - 𝛂 Mertebesinde İstatatistiksel Yakınsaklık ve Sınırlılık AU - Dinç, Tuba AU - Bektaş, Çiğdem PY - 2025 DA - June Y2 - 2025 DO - 10.18586/msufbd.1573487 JF - Mus Alparslan University Journal of Science JO - MAUN Fen Bil. Dergi. PB - Mus Alparslan University WT - DergiPark SN - 2147-7930 SP - 1 EP - 6 VL - 13 IS - 1 LA - en AB - In this paper, we defined the concepts of (∆_v^m )_u-statistical convergence and (∆_v^m )_u-statistical boundedness for sequences u and v with nonzero terms. Then, we extend these concepts to the concepts of (∆_(λ,v)^m )_u-statistical convergence and (∆_(λ,v)^m )_u-statistical boundedness using the sequences (λ_n) satisfying the conditions λ_1=1, λ_(n+1)≤λ_n+1 and λ_n→∞ (n→∞). Then, using the concepts of (∆_(λ,v)^m )_u-statistical convergence and (∆_(λ,v)^m )_u-statistical boundedness, we defined the sequence spaces (∆_(λ,v)^m )_u (S_c^α) and (∆_(λ,v)^m )_u (S_b^α) with the help of numbers α satisfying the condition 0 KW - Difference sequences KW - Statistical Boundedness KW - Statistical Convergence N2 - Bu makalede, terimleri sıfırdan farklı u ve v sayı dizileri için (∆_v^m )_u-istatistiksel yakınsaklık ve (∆_v^m )_u-istatistiksel sınırlılık kavramlarını tanımladık. Daha sonra bu kavramları λ_1=1, λ_(n+1)≤λ_n+1 ve λ_n→∞ (n→∞) şartını sağlayan (λ_n) dizilerini kullanarak (∆_(λ,v)^m )_u-istatistiksel yakınsaklık ve (∆_(λ,v)^m )_u-istatistiksel sınırlılık kavramlarına genişlettik. Daha sonra (∆_(λ,v)^m )_u-istatistiksel yakınsaklık ve (∆_(λ,v)^m )_u-istatistiksel sınırlılık kavramlarını kullanarak 0 CR - [1] Fast H. Sur la convergence statistique, in Colloquium Mathematicae, 1951. CR - [2] Steinhaus H. Sur la convergence ordinaire et la convergence asymptotique, in Colloq. math, 1951 CR - [3] Buck R. C. Generalized Asymptotic Density.American Journal of Mathematics, 75 335-346, 1953. CR - [4] Schoenberg I.J. The integrability of certain functions and related summability methods, The American Mathematical Monthly, 66 361-775, 1959. CR - [5] Mursaleen M. λ-statistical convergence, Mathematica Slovaca, 50 111-115, 2000. CR - [6] Gadjiev A., Orhan C. Some approximation theorems via statistical convergence, The Rocky Mountain Journal of Mathematics, 129-138, 2002. CR - [7] Çolak R. Statistical convergence of order α, Modern Methods in Analysis and Its Applications, Anamaya Pub., New Delhi, India, 121–129, 2010. CR - [8] Çolak R. On λ-statistical convergence, in Conference on Summability and Applications, Turkey, 2011. CR - [9] Çolak R., Bektaş Ç. A. λ-Statistical convergence of order α, Acta Mathematica Scientia, 31 953-959, 2011. CR - [10] Kizmaz H. On certain sequence spaces, Canadian Mathematical Bulletin, 24 169-176, 1981. CR - [11] Et M., Çolak R. On some generalized difference sequence spaces, Soochow Journal of Mathematics, 21 377-386, 1995. CR - [12] Et M., Nuray F. Delta (m)-Statistical convergence, Indian Journal of Pure & Applied Mathematics, 32, 2001. CR - [13] Çolak R. On some generalized sequence spaces, Communications Faculty Of Science University of Ankara Series A1 Mathematics and Statistics, 035-046, 1989. CR - [14] Et M., Esi A. On Köthe-Toeplitz duals of generalized difference sequence spaces, Bull. Malays. Math. Sci. Soc., 23 25-32, 2000. CR - [15] Fridy J., Orhan C. Statistical limit superior and limit inferior, Proceedings of the American Mathematical Society, 125 3625-3631, 1997. CR - [16] Bhardwaj V. K., Gupta S. On some generalizations of statistical boundedness, Journal of Inequalities and Applications, 12, 2014. CR - [17] Temizsu F., Et M. Some results on generalizations of statistical boundedness, Mathematical Methods in the Applied Sciences, 44 7471-7478, 2021. UR - https://doi.org/10.18586/msufbd.1573487 L1 - https://dergipark.org.tr/en/download/article-file/4314704 ER -