TY - JOUR T1 - Investigation of cutting qualities of AISI304 stainless steel using plasma arc cutting method AU - Erdem, Oğuz AU - Hırtıslı, Şerafettin PY - 2024 DA - December Y2 - 2024 DO - 10.26701/ems.1573836 JF - European Mechanical Science JO - EMS PB - Ahmet ÇALIK WT - DergiPark SN - 2587-1110 SP - 319 EP - 330 VL - 8 IS - 4 LA - en AB - Since cutting stainless steels with non-traditional manufacturing processes such as laser beam cutting or water jet cutting is quite costly, machining with the plasma arc cutting (PAC) method, which is generally more economical, has been preferred more frequently in recent years. In this context, the use of PAC method in manufacturing of machine parts, especially in the construction and manufacturing industries, as well as in other industries such as food, automotive and petrochemicals, is increasing day by day. In these sectors, where high corrosion resistance and resistance to acidic environments are required, AISI304 stainless steel is generally preferred as the raw material. In this study, comprehensive literature research on PAC was conducted and the cutting qualities of AISI304 stainless steel plates with 4 and 8 mm thickness were investigated. Nine different types of experiment conditions (E1-E9) were created by the machining parameters (gas pressure: 0.6, 0.7 and 0.8 MPa – cutting speed: 151, 215 and 217 mm/min) determined from other experimental studies in the literature. The lowest average kerf taper value (0.32̊) was obtained on the 4 mm thick plate with a gas pressure of 0.6 MPa and a cutting speed of 151 mm/min, whereas the highest average kerf taper value (2.59̊) was obtained on the 8 mm thick plate where the gas pressure was 0.8 MPa and the cutting speed was 217 mm/min. The results revealed that for both plates, as the cutting speed increases at constant pressure values, the cutting surface roughness values ​​increase. On the other hand, as the cutting speed is constant, the surface roughness decreases as the gas pressure value increases. The plates were cut into 100 mm long straight lines and the bottom surface burr formations and the top surface spatter formations in the PAC method were also examined. KW - Plasma arc cutting KW - plasma cutting speed KW - plasma gas pressure KW - cutting width taper KW - kerf taper angle KW - cutting surface roughness CR - [1] Bini, R., Colosimo, B. M., Kutlu, A. E., & Monno, M. (2008). Experimental study of the features of the kerf generated by a 200 A high tolerance plasma arc cutting system. Journal of Materials Processing Technology, 196(1-3): 345-355. https://doi.org/10.1016/j.jmatprotec.2007.05.061 CR - [2] Kavka, T., Chumak, O., Šonský, J., Heinrich, M., Stehrer, T., & Pauser, H. (2013). Experimental study of anode processes in plasma arc cutting. Journal of Physics D: Applied Physics, 46(6): 1-11. doi:10.1088/0022-3727/46/6/065202 CR - [3] Colombo, V., Concetti, A., Ghedini, E., Rotundo, F., Sanibondi, P., Boselli, M., Dallavalle, S., Nemchinsky, V. & Vancini, M. (2012). Advances in plasma arc cutting technology: the experimental part of an integrated approach. Plasma Chemistry and Plasma Processing, 32: 411-426. doi:10.1007/s11090-011-9338-8 CR - [4] Cinar, Z., Asmael, M., & Zeeshan, Q. (2018). Developments in plasma arc cutting (PAC) of steel alloys: a review. Jurnal Kejuruteraan, 30(1): 1-6. https://doi.org/10.17576/jkukm-2018-30(1) CR - [5] Silvia, F. P., Bogdan-Ciprian, P., & Cornel, C. (2012). Plasma arc cutting-overview. 2nd International Conference on Quality and Innovation in Engineering and Management, 357-360. CR - [6] Kutlu, A. E., Monno, M., & Bini, R. (2005). Plazma ile kesme metoduna genel bir bakış. Mühendis ve Makina, 46(541): 21-29. CR - [7] Yalçın, H. & Gürü, M. (2002). Malzeme Bilgisi. Palme Yayıncılık, Ankara. CR - [8] Bhowmick, S., Basu, J., Majumdar, G., & Bandyopadhyay, A. (2018). Experimental study of plasma arc cutting of AISI 304 stainless steel. Materials Today: Proceedings, 5(2): 4541-4550. https://doi.org/10.1016/j.matpr.2017.12.024 CR - [9] Çelik, Y. H., & Özek, C. (2011). CNC Plazma ile kesmede işleme parametrelerinin kesme kalitesine etkisinin araştırılması. 6th International Advanced Technologies Symposium (IATS’11), 65-70. CR - [10] Tsiolikas, A., Kechagias, J., Salonitis, K., & Mastorakis, N. (2016). Optimization of cut surface quality during CNC Plasma Arc Cutting process. International Journal of Systems Applications, Engineering & Development, 10: 305-308. CR - [11] Patel, P., Nakum, B., Abhishek, K., Kumar, V. R., & Kumar, A. (2018). Optimization of surface roughness in plasma arc cutting of AISID2 steel using TLBO. Materials Today: Proceedings, 5(9): 18927-18932. https://doi.org/10.1016/j.matpr.2018.06.242 CR - [12] Bhuvenesh, R., Norizaman, M. H., & Manan, M. S. (2012). Surface roughness and MRR effect on manual plasma arc cutting machining. International Journal of Industrial and Manufacturing Engineering, 6: 131-134. CR - [13] Parthiban, A., Prasath, J. P., Vivek, P., & Pugazhenthi, R. (2018). Experimental investigation of plasma arc cutting for stainless steel sheet. International Journal of Mechanical and Production Engineering Research and Development, 8(1): 907-914. CR - [14] Gautam, P. K. & Gupta, V. (2019). Analysis of process parameters of plasma arc cutting using design of experiment. International Research Journal of Engineering and Technology (IRJET), 6: 2733-2742. CR - [15] Ilii, S. M., Coteata, M., & Munteanu, A. (2010). Experimental results concerning the variation of surface roughness parameter (Ra) at plasma arc cutting of a stainless steel workpiece. International Journal of Modern Manufacturing Technologies, 2(1): 31-36. CR - [16] Rana, K., Kaushik, P., & Chaudhary, S. (2013). Optimization of plasma arc cutting by applying Taguchi Method. International Journal of Enhanced Research in Science Technology & Engineering, 2(7): 106-110. CR - [17] Hamid, A., Novareza, O., & Widodo, T. D. (2019). Optimization of process parameters and quality results using plasma arc cutting in aluminum alloy. Journal of Engineering and Management in Industrial System (JEMIS), 7(1): 7-14. doi:ub.jemis.2019.007.01.2 CR - [18] Das, M. K., Kumar, K., Barman, T. K., & Sahoo, P. (2014). Optimization of MRR and surface roughness in PAC of EN 31 steel using weighted principal component analysis. Procedia Technology, 14: 211-218. https://doi.org/10.1016/j.protcy.2014.08.028 CR - [19] Chamarthi, S., Reddy, N. S., Elipey, M. K., & Reddy, D. R. (2013). Investigation analysis of plasma arc cutting parameters on the unevenness surface of Hardox-400 material. Procedia Engineering, 64: 854-861. https://doi.org/10.1016/j.proeng.2013.09.161 CR - [20] Skoczylas, A. & Zaleski, K. (2015). Effect of plasma cutting parameters upon shapes of bearing curve of C45 steel surface. Advances in Science and Technology Research Journal, 9(27): 78-82. https://doi.org/10.12913/22998624/59088 CR - [21] Hatala, M., Zajac, J., Čep, R., & Orlovský, I. (2012). Research of the technological parameters importance for plasma arc thermal cutting. Applied Mechanics and Materials, 110: 3742-3749. https://doi.org/10.4028/www.scientific.net/AMM.110-116.3742 CR - [22] Chiarelli, M., Lanciotti, A., & Sacchi, M. (2000). Effect of plasma cutting on the fatigue resistance of Fe510 D1 steel. Journal of Engineering Materials and Technology, 122(1): 141-145. https://doi.org/10.1115/1.482778 CR - [23] Radovanovic, M. & Madic, M. (2011). Modeling the plasma arc cutting process using ANN. Nonconventional Technologies Review, 4: 43-48. CR - [24] Hoult, A. P., Pashby, I. R., & Chan, K. (1995). Fine plasma cutting of advanced aerospace materials. Journal of Materials Processing Technology, 48(1-4): 825-831. https://doi.org/10.1016/0924-0136(94)01727-I CR - [25] Gostimirović, M., Rodić, D., Sekulić, M., & Aleksić, A. (2020). An experimental analysis of cutting quality in plasma arc machining. Advanced Technologies and Materials, 45(1): 1-8. doi:10.24867/ATM-2020-1-001 CR - [26] Singh, G. & Akhai, S. (2015). Experimental study and optimisation of MRR in CNC plasma arc cutting. International Journal of Engineering Research and Applications, 5(6): 96-99. CR - [27] Suresh, A. & Diwakar, G. (2021). Optimization of process parameters in plasma arc cutting for TWIP steel plates. Materials Today: Proceedings, 38(5): 2417-2424. https://doi.org/10.1016/j.matpr.2020.07.383 CR - [28] Iida, K., Takenaka, Y., Uesugi, Y., Tanaka, Y., Ishijima, T., Nakano, Y., Yamaguchi, Y., & Takata, N. (2020). Observation system of molten steel behavior on plasma arc cutting surface. IEEJ Transactions on Electrical and Electronic Engineering, 15(5): 796-801. https://doi.org/10.1002/tee.23119 CR - [29] Naik, D. K. & Maity, K. (2020). Experimental analysis of the effect of gas flow rate and nature on plasma arc cutting of hardox-400. Welding in the World, 64: 345-352. https://doi.org/10.1007/s40194-019-00836-8 CR - [30] Ferreira, P., Melo, I., Coelho, A. G., & Mourão, A. (2009). Plasma cutting optimization by using the response surface methodology. International Conference NEWTECH 2009-Annals of “Dunarea de Jos” University of Galati, Fascicle V, Technologies in machine building, 213-218. CR - [31] Masoudi, S., Mirabdolahi, M., Dayyani, M., Jafarian, F., Vafadar, A., & Dorali, M. R. (2019). Development of an intelligent model to optimize heat-affected zone, kerf, and roughness in 309 stainless steel plasma cutting by using experimental results. Materials and Manufacturing Processes, 34(3): 345-356. https://doi.org/10.1080/10426914.2018.1532579 CR - [32] Sharma, S., Gupta, M., Kumar, R., & Bindra, N. S. (2017). Experimental analysis and optimization of process parameters in plasma arc cutting machine of EN-45A material using Taguchi and ANOVA method. International Journal of Mechanical and Industrial Engineering, 11(7): 1387-1391. CR - [33] Sandeep, R., Sudhakara, D., & Sreenivasulu, B. (2015). Multi objective optimization of process parameters in plasma arc cutting of SS 420 using Grey-Taguchi analysis. International Journal of Advanced Engineering Research and Science (IJAERS), 2: 46-52. CR - [34] Muhamedagic, K., Begic-Hajdarevic, D., Pasic, M., & Cekic, A. (2018). Optimization of process parameters in plasma arc cutting using TOPSIS method. 29th DAAAM International Symposium on Intelligent Manufacturing and Automation, 202-209. CR - [35] Hamood, S. A. & Najm, V. N. (2020). Optimization of plasma cutting parameters on dimensional accuracy and machining time for low carbon steel. Engineering and Technology Journal, 38(8A): 1160-1168. https://doi.org/10.30684/etj.v38i8A.1151 CR - [36] Adalarasan, R., Santhanakumar, M., & Rajmohan, M. (2015). Application of Grey Taguchi-based response surface methodology (GT-RSM) for optimizing the plasma arc cutting parameters of 304L stainless steel. The International Journal of Advanced Manufacturing Technology, 78: 1161-1170. doi: 10.1007/s00170-014-6744-0 CR - [37] Kim, S. I. & Kim, M. H. (2013). Evaluation of cutting characterization in plasma cutting of thick steel ship plates. International Journal of Precision Engineering and Manufacturing, 14: 1571-1575. doi: 10.1007/s12541-013-0212-x CR - [38] Begic, D., Kulenovic, M., Cekic, A., & Dedic, E. (2012). Some experimental studies on plasma cutting quality of low alloy steel. 23rd International DAAAM Symposium, 183-186. CR - [39] Peko, I., Nedić, B., Đorđević, A., & Veža, I. (2018). Modelling of kerf width in plasma jet metal cutting process using ANN approach. Tehnički vjesnik, 25(2): 401-406. https://doi.org/10.17559/TV-20161024093323 CR - [40] Kountouras, D., Papanikolaou, S., Intzevidou, P., Kechagias, J., & Maropoulos, S. (2014). The Influence of micro structural aspects on a parameter design of carbon steel plate CNC plasma arc-cutting. Scientific Works of University of Food Technologies, 61: 790-796. CR - [41] Zajac, A. & Pfeifer, T. (2006). Restricting the heat-affected zone during the plasma cutting of high-alloy steels. Welding international, 20(1): 5-9. https://doi.org/10.1533/wint.2006.3534 CR - [42] Liu, P., Liu, Y., Zheng, C., Wang, Q., & Qin, Z. (2024). Underwater plasma arc cutting process of oil casing in shallow. Applied Ocean Research, 153: 1-16. https://doi.org/10.1016/j.apor.2024.104302 CR - [43] Tuladhar, U., Ahn, S. H., Jeong, G. H., Bae, J., Kim, S., Kang, J., Cho, D. W., & Ahn, S. (2024). Numerical analysis and Schlieren visualization of gas flow dynamics inside the plasma arc cut kerf with curved cutting fronts. International Communications in Heat and Mass Transfer, 159: 1-14. https://doi.org/10.1016/j.icheatmasstransfer.2024.108075 CR - [44] Sidorov, E. A., Grinenko, A. V., Chumaevskii, A. V., Rubtsov, V. E., Nikolaeva, A. V., Panfilov, A. O., Knyazhev, E. O., Cheremnov, A. M., Utyaganova, V. R., Osipovich, K. S., Gurianov, D. A., & Kolubaev, E. A. (2024). Surface structure formation in plasma cutting of aluminum and titanium alloys using direct current straight and reverse polarity. Physical Mesomechanics, 27(5): 518-528. doi: 10.1134/S1029959924050023. CR - [45] Grinenko, A. V., Chumaevskii, A. V., Knjazhev, E. O., Gurianov, D. A., Sidorov, E. A., & Kolubaev, E. A. (2024). Reverse-polarity plasma cutting of thick aluminum alloy plates. Russian Physics Journal, 67(9): 1309-1315. doi: 10.1007/s11182-024-03249-3. CR - [46] Tuladhar, U., Ahn, S. H., Cho, D. W., Ahn, S., Kim, D. H., Bae, S. H., Kim, S., Park, T. K., & Kang, J. (2024). Experimental investigation of plasma arc cutting process to evaluate the characteristics of kerf geometry using ANOVA. Journal of Mechanical Science and Technology, 38(7): 3641-3655. doi: 10.1007/s12206-024-0637-4. CR - [47] Liu, X., Wang, Z., Wu, J., & Tian, J. (2024). Three-dimensional numerical simulation of magnetically confined plasma cutting arc. The International Journal of Advanced Manufacturing Technology, 133: 2419-2433. https://doi.org/10.1007/s00170-024-13828-w CR - [48] Hussain, S., Qazi, M. I., & Abas, M. (2024). Investigation and optimization of plasma arc cutting process parameters for AISI 304 by integrating principal component analysis and composite desirability method. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 46(33): 1-16. https://doi.org/10.1007/s40430-023-04614-y CR - [49] Hirtisli, S., Erdem, O. (2023). The effects of machining parameters on circularity tolerance in plasma arc cutting method. 7th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), 1-6. CR - [50] Bozdemir, M. (2018). Prediction of surface roughness considering cutting parameters and humidity condition in end milling of polyamide materials. Computational Intelligence and Neuroscience, 1: 1-7. doi:10.1155/2018/5850432 UR - https://doi.org/10.26701/ems.1573836 L1 - https://dergipark.org.tr/en/download/article-file/4316219 ER -