TY - JOUR T1 - Lityum İyon Pillerin Tarihten Bugüne Gelişimi ve Son Teknolojide Gelinen Nokta AU - Pehlivan, Hüseyin AU - Öz, Erdinç AU - Yıldırım, Muhammet PY - 2024 DA - December Y2 - 2024 DO - 10.5281/zenodo.14344328 JF - Journal of Anatolian Physics and Astronomy JO - Journal of Anatolian Physics and Astronomy PB - Ataturk University WT - DergiPark SN - 2791-8718 SP - 83 EP - 94 VL - 3 IS - 2 LA - tr AB - Bu derleme makalesi, lityum iyon pillerin antik çağlardan günümüze kadar olan tarihsel gelişimini, çalışma prensiplerini, avantajlarını, dezavantajlarını ve gelecekteki potansiyelini incelemektedir. Lityum iyon piller, yüksek enerji yoğunluğu, uzun çevrim ömrü ve düşük kendi kendine deşarj oranı gibi avantajları sayesinde taşınabilir elektronik cihazlardan elektrikli araçlara ve yenilenebilir enerji depolama sistemlerine kadar çeşitli alanlarda kullanılmaktadır. Bu teknolojinin geleceği, malzeme bilimi, pil tasarımı ve üretim süreçlerindeki yeniliklerle şekillenecektir. Katı hal piller, lityum-sülfür piller ve sodyum-iyon piller gibi alternatif teknolojiler de gelecekte enerji depolama alanında önemli bir rol oynayabilir. KW - Lityum iyon piller KW - Lityum iyon pillerin çalışma mekanizması KW - kullanım alanları KW - gelecek çalışmalar için öngörüler. CR - Abdelaal, M. M., & Alkhedher, M. (2024). Dual optimization of LiFePO4 cathode performance using manganese substitution and a hybrid lithiated Nafion-modified PEDOT:PSS coating layer for lithium-ion batteries. Electrochimica Acta, 506, 145050. https://doi.org/10.1016/J.ELECTACTA.2024.145050 CR - Ahmed, S., Nelson, P. A., Gallagher, K. G., Susarla, N., & Dees, D. W. (2017). Cost and energy demand of producing nickel manganese cobalt cathode material for lithium ion batteries. Journal of Power Sources, 342, 733-740. https://doi.org/10.1016/J.JPOWSOUR.2016.12.069 CR - Armand, M., & Tarascon, J. M. (2008). Building better batteries. Nature 2008 451:7179, 451(7179), 652-657. https://doi.org/10.1038/451652a CR - Arya, S., & Verma, S. (2020). Nickel‐Metal Hydride (Ni‐MH) Batteries. Içinde Rechargeable Batteries. https://doi.org/10.1002/9781119714774.ch8 CR - Aslam, M. K., Niu, Y., Hussain, T., Tabassum, H., Tang, W., Xu, M., & Ahuja, R. (2021). How to avoid dendrite formation in metal batteries: Innovative strategies for dendrite suppression. Nano Energy, 86, 106142. https://doi.org/10.1016/J.NANOEN.2021.106142 CR - Babu, B. (2024). Self-discharge in rechargeable electrochemical energy storage devices. Energy Storage Materials, 67, 103261. https://doi.org/10.1016/J.ENSM.2024.103261 CR - Bates, A. M., Preger, Y., Torres-Castro, L., Harrison, K. L., Harris, S. J., & Hewson, J. (2022). Are solid-state batteries safer than lithium-ion batteries? Içinde Joule (C. 6, Sayı 4). https://doi.org/10.1016/j.joule.2022.02.007 CR - Bi, C. X., Hou, L. P., Li, Z., Zhao, M., Zhang, X. Q., Li, B. Q., Zhang, Q., & Huang, J. Q. (2023). Protecting lithium metal anodes in lithium–sulfur batteries: A review. Energy Material Advances, 4. https://doi.org/10.34133/energymatadv.0010 CR - Castillo, J., Coca-Clemente, J. A., Rikarte, J., Sáenz De Buruaga, A., Santiago, A., & Li, C. (2023). Recent progress on lithium anode protection for lithium-sulfur batteries: Review and perspective. Içinde APL Materials (C. 11, Sayı 1). https://doi.org/10.1063/5.0107648 CR - Cecchini, R., & Pelosi, G. (1992). From the Historian--Alessandro Volta and his battery. IEEE Antennas and Propagation Magazine, 34(2). https://doi.org/10.1109/74.134307 CR - Cen, Y., Sisson, R. D., Qin, Q., & Liang, J. (2018). Current Progress of Si/Graphene Nanocomposites for Lithium-Ion Batteries. C 2018, Vol. 4, Page 18, 4(1), 18. https://doi.org/10.3390/C4010018 CR - Chawla, N., Bharti, N., & Singh, S. (2019). Recent Advances in Non-Flammable Electrolytes for Safer Lithium-Ion Batteries. Batteries 2019, Vol. 5, Page 19, 5(1), 19. https://doi.org/10.3390/BATTERIES5010019 CR - Choi, S. Il, Jung, E. J., Park, M., Shin, H. S., Huh, S., & Won, Y. S. (2020). Phase-dependent performance of lotus-root shaped TiO2 anode for lithium-ion batteries (LIBs). Applied Surface Science, 508, 145237. https://doi.org/10.1016/J.APSUSC.2019.145237 CR - Chombo, P. V., & Laoonual, Y. (2020). A review of safety strategies of a Li-ion battery. Journal of Power Sources, 478, 228649. https://doi.org/10.1016/J.JPOWSOUR.2020.228649 CR - Costa, C. M., Gonçalves, R., & Lanceros-Méndez, S. (2019). Advances in Cathode Nanomaterials for Lithium-Ion Batteries. Içinde Nanostructured Materials for Next-Generation Energy Storage and Conversion (ss. 105-145). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-58675-4_3 CR - Crabtree, G., Kócs, E., & Trahey, L. (2015). The energy-storage frontier: Lithium-ion batteries and beyond. MRS Bulletin, 40(12). https://doi.org/10.1557/mrs.2015.259 CR - Das, D., Manna, S., & Puravankara, S. (2023). Electrolytes, Additives and Binders for NMC Cathodes in Li-Ion Batteries—A Review. Içinde Batteries (C. 9, Sayı 4). https://doi.org/10.3390/batteries9040193 CR - Dong, B., Poletayev, A. D., Cottom, J. P., Castells-Gil, J., Spencer, B. F., Li, C., Zhu, P., Chen, Y., Price, J. M., Driscoll, L. L., Allan, P. K., Kendrick, E., Islam, M. S., & Slater, P. R. (2024). Effects of sulfate modification of stoichiometric and lithium-rich LiNiO2 cathode materials. Journal of Materials Chemistry A, 12(19), 11390-11402. https://doi.org/10.1039/D4TA00284A CR - Dufo-López, R., Cortés-Arcos, T., Artal-Sevil, J. S., & Bernal-Agustín, J. L. (2021). Comparison of Lead-Acid and Li-Ion Batteries Lifetime Prediction Models in Stand-Alone Photovoltaic Systems. Applied Sciences 2021, Vol. 11, Page 1099, 11(3), 1099. https://doi.org/10.3390/APP11031099 CR - Dunn, B., Kamath, H., & Tarascon, J. M. (2011). Electrical energy storage for the grid: A battery of choices. Science, 334(6058), 928-935. https://doi.org/10.1126/SCIENCE.1212741/SUPPL_FILE/DUNN-SOM.PDF CR - El Kharbachi, A., Zavorotynska, O., Latroche, M., Cuevas, F., Yartys, V., & Fichtner, M. (2020). Exploits, advances and challenges benefiting beyond Li-ion battery technologies. Journal of Alloys and Compounds, 817, 153261. https://doi.org/10.1016/J.JALLCOM.2019.153261 CR - Fan, X., Sun, W., Meng, F., Xing, A., & Liu, J. (2018). Advanced chemical strategies for lithium–sulfur batteries: A review. Içinde Green Energy and Environment (C. 3, Sayı 1). https://doi.org/10.1016/j.gee.2017.08.002 CR - Gandoman, F. H., Jaguemont, J., Goutam, S., Gopalakrishnan, R., Firouz, Y., Kalogiannis, T., Omar, N., & Van Mierlo, J. (2019). Concept of reliability and safety assessment of lithium-ion batteries in electric vehicles: Basics, progress, and challenges. Applied Energy, 251, 113343. https://doi.org/10.1016/J.APENERGY.2019.113343 CR - Goodenough, J. B., & Park, K. S. (2013). The Li-ion rechargeable battery: A perspective. Journal of the American Chemical Society, 135(4), 1167-1176. https://doi.org/10.1021/JA3091438/ASSET/IMAGES/JA-2012-091438_M014.GIF CR - Guo, B., Ji, X., Wang, W., Chen, X., Wang, P., Wang, L., & Bai, J. (2021). Highly flexible, thermally stable, and static dissipative nanocomposite with reduced functionalized graphene oxide processed through 3D printing. Composites Part B: Engineering, 208, 108598. https://doi.org/10.1016/J.COMPOSITESB.2020.108598 CR - Haregewoin, A. M., Wotango, A. S., & Hwang, B. J. (2016). Electrolyte additives for lithium ion battery electrodes: progress and perspectives. Energy & Environmental Science, 9(6), 1955-1988. https://doi.org/10.1039/C6EE00123H CR - Harper, G., Sommerville, R., Kendrick, E., Driscoll, L., Slater, P., Stolkin, R., Walton, A., Christensen, P., Heidrich, O., Lambert, S., Abbott, A., Ryder, K., Gaines, L., & Anderson, P. (2019). Recycling lithium-ion batteries from electric vehicles. Nature 2019 575:7781, 575(7781), 75-86. https://doi.org/10.1038/s41586-019-1682-5 CR - Iturrondobeitia, A., Aguesse, F., Genies, S., Waldmann, T., Kasper, M., Ghanbari, N., Wohlfahrt-Mehrens, M., & Bekaert, E. (2017). Post-Mortem Analysis of Calendar-Aged 16 Ah NMC/Graphite Pouch Cells for EV Application. Journal of Physical Chemistry C, 121(40). https://doi.org/10.1021/acs.jpcc.7b05416 CR - Kaushik, S., Chand, P., & Sharma, S. (2024). High-performance pristine ZIF-67 asymmetric supercapacitor device with excellent energy and power density for energy storage application. Electrochimica Acta, 497, 144565. https://doi.org/10.1016/J.ELECTACTA.2024.144565 CR - Kim, H. J., Krishna, T. N. V., Zeb, K., Rajangam, V., Muralee Gopi, C. V. V., Sambasivam, S., Raghavendra, K. V. G., & Obaidat, I. M. (2020). A comprehensive review of li-ion battery materials and their recycling techniques. Içinde Electronics (Switzerland) (C. 9, Sayı 7). https://doi.org/10.3390/electronics9071161 CR - Kordesch, K., & Taucher-Mautner, W. (2009). Primary Batteries - Aqueous Systems | Leclanché and Zinc-Carbon. Içinde Encyclopedia of Electrochemical Power Sources. https://doi.org/10.1016/B978-044452745-5.00097-6 CR - Lanjan, A., Ghalami Choobar, B., & Amjad-Iranagh, S. (2020). Promoting lithium-ion battery performance by application of crystalline cathodes LixMn1−zFezPO4. Journal of Solid State Electrochemistry, 24(1), 157-171. https://doi.org/10.1007/S10008-019-04480-6/TABLES/5 CR - Larcher, D., & Tarascon, J. M. (2014). Towards greener and more sustainable batteries for electrical energy storage. Nature Chemistry 2014 7:1, 7(1), 19-29. https://doi.org/10.1038/nchem.2085 CR - Leng, F., Tan, C. M., & Pecht, M. (2015). Effect of Temperature on the Aging rate of Li Ion Battery Operating above Room Temperature. Scientific Reports 2015 5:1, 5(1), 1-12. https://doi.org/10.1038/srep12967 CR - Li, M., Lu, J., Chen, Z., & Amine, K. (2018). 30 Years of Lithium-Ion Batteries. Advanced Materials, 30(33), 1800561. https://doi.org/10.1002/ADMA.201800561 CR - Li, T., Huang, M., Bai, X., & Wang, Y. X. (2023). Metal–air batteries: A review on current status and future applications. Içinde Progress in Natural Science: Materials International (C. 33, Sayı 2). https://doi.org/10.1016/j.pnsc.2023.05.007 CR - Liang, H., Zuo, X., Zhang, L., Huang, W., Chen, Q., Zhu, T., Liu, J., & Nan, J. (2020). Nonflammable LiTFSI-Ethylene Carbonate/1,2-Dimethoxyethane Electrolyte for High-Safety Li-ion Batteries. Journal of The Electrochemical Society, 167(9), 090520. https://doi.org/10.1149/1945-7111/AB8803 CR - Lu, X., & Anariba, F. (2014). Fostering innovation through an active learning activity inspired by the baghdad battery. Journal of Chemical Education, 91(11), 1929-1933. https://doi.org/10.1021/ED400869C/SUPPL_FILE/ED400869C_SI_002.DOCX CR - Luo, J., Zhao, X., Wu, J., Jang, H. D., Kung, H. H., & Huang, J. (2012). Crumpled graphene-encapsulated Si nanoparticles for lithium ion battery anodes. Journal of Physical Chemistry Letters, 3(13), 1824-1829. https://doi.org/10.1021/JZ3006892/SUPPL_FILE/JZ3006892_SI_001.PDF CR - Lyu, Y., Wu, X., Wang, K., Feng, Z., Cheng, T., Liu, Y., Wang, M., Chen, R., Xu, L., Zhou, J., Lu, Y., & Guo, B. (2021). An Overview on the Advances of LiCoO2 Cathodes for Lithium-Ion Batteries. Içinde Advanced Energy Materials (C. 11, Sayı 2). https://doi.org/10.1002/aenm.202000982 CR - Marino, C., Boulet, L., Gaveau, P., Fraisse, B., & Monconduit, L. (2012). Nanoconfined phosphorus in mesoporous carbon as an electrode for Li-ion batteries: performance and mechanism. Journal of Materials Chemistry, 22(42), 22713-22720. https://doi.org/10.1039/C2JM34562E CR - McDowell, M. T., Lee, S. W., Nix, W. D., & Cui, Y. (2013). 25th Anniversary Article: Understanding the Lithiation of Silicon and Other Alloying Anodes for Lithium-Ion Batteries. Advanced Materials, 25(36), 4966-4985. https://doi.org/10.1002/ADMA.201301795 CR - Mizushima, K., Jones, P. C., Wiseman, P. J., & Goodenough, J. B. (1980). LixCoO2 (0 <x <-1): A new cathode material for batteries of high energy density. Materials Research Bulletin, 15(6), 783-789. https://doi.org/10.1016/0025-5408(80)90012-4 CR - Moradi, Z., Lanjan, A., Tyagi, R., & Srinivasan, S. (2023). Review on current state, challenges, and potential solutions in solid-state batteries research. Journal of Energy Storage, 73, 109048. https://doi.org/10.1016/J.EST.2023.109048 CR - Nitta, N., Wu, F., Lee, J. T., & Yushin, G. (2015). Li-ion battery materials: present and future. Materials Today, 18(5), 252-264. https://doi.org/10.1016/J.MATTOD.2014.10.040 CR - Niu, H., Zhang, N., Lu, Y., Zhang, Z., Li, M., Liu, J., Song, W., Zhao, Y., & Miao, Z. (2024). Strategies toward the development of high-energy-density lithium batteries. Journal of Energy Storage, 88, 111666. https://doi.org/10.1016/J.EST.2024.111666 CR - Olabi, A. G., Sayed, E. T., Wilberforce, T., Jamal, A., Alami, A. H., Elsaid, K., Rahman, S. M. A., Shah, S. K., & Abdelkareem, M. A. (2021). Metal-air batteries—a review. Içinde Energies (C. 14, Sayı 21). https://doi.org/10.3390/en14217373 CR - Orangi, S., Manjong, N., Clos, D. P., Usai, L., Burheim, O. S., & Strømman, A. H. (2024). Historical and prospective lithium-ion battery cost trajectories from a bottom-up production modeling perspective. Journal of Energy Storage, 76, 109800. https://doi.org/10.1016/J.EST.2023.109800 CR - Ozanam, F., & Rosso, M. (2016). Silicon as anode material for Li-ion batteries. Materials Science and Engineering: B, 213, 2-11. https://doi.org/10.1016/J.MSEB.2016.04.016 CR - Pan, F., & Wang, Q. (2015). Redox species of redox flow batteries: A review. Içinde Molecules (C. 20, Sayı 11). https://doi.org/10.3390/molecules201119711 CR - Piątek, J., Afyon, S., Budnyak, T. M., Budnyk, S., Sipponen, M. H., & Slabon, A. (2021). Sustainable Li-Ion Batteries: Chemistry and Recycling. Advanced Energy Materials, 11(43), 2003456. https://doi.org/10.1002/AENM.202003456 CR - Rahman, Md. A., Wang, X., & Wen, C. (2013). High Energy Density Metal-Air Batteries: A Review. Journal of The Electrochemical Society, 160(10). https://doi.org/10.1149/2.062310jes CR - Rajkamal, A., & Thapa, R. (2019). Carbon Allotropes as Anode Material for Lithium-Ion Batteries. Advanced Materials Technologies, 4(10), 1900307. https://doi.org/10.1002/ADMT.201900307 CR - Ramkumar, M. S., Reddy, C. S. R., Ramakrishnan, A., Raja, K., Pushpa, S., Jose, S., & Jayakumar, M. (2022). Review on Li-Ion Battery with Battery Management System in Electrical Vehicle. Advances in Materials Science and Engineering, 2022(1), 3379574. https://doi.org/10.1155/2022/3379574 CR - Sasaki, T., Ukyo, Y., & Novák, P. (2013). Memory effect in a lithium-ion battery. Nature Materials 2013 12:6, 12(6), 569-575. https://doi.org/10.1038/nmat3623 CR - Schmaltz, T., Hartmann, F., Wicke, T., Weymann, L., Neef, C., & Janek, J. (2023). A Roadmap for Solid-State Batteries. Advanced Energy Materials, 13(43). https://doi.org/10.1002/aenm.202301886 CR - Tsai, P. J., & Chan, S. L. I. (2013). Nickel-based batteries: materials and chemistry. Içinde Electricity Transmission, Distribution and Storage Systems. https://doi.org/10.1533/9780857097378.3.309 CR - Ventosa, E., Löffler, T., La Mantia, F., & Schuhmann, W. (2016). Understanding memory effects in Li-ion batteries: evidence of a kinetic origin in TiO2 upon hydrogen annealing. Chemical Communications, 52(77), 11524-11526. https://doi.org/10.1039/C6CC06070F CR - Wang, Q., Zou, R., Xia, W., Ma, J., Qiu, B., Mahmood, A., Zhao, R., Yang, Y., Xia, D., & Xu, Q. (2015). Facile Synthesis of Ultrasmall CoS2 Nanoparticles within Thin N-Doped Porous Carbon Shell for High Performance Lithium-Ion Batteries. Small, 11(21), 2511-2517. https://doi.org/10.1002/SMLL.201403579 CR - Wang, Y., Song, S., Xu, C., Hu, N., Molenda, J., & Lu, L. (2019). Development of solid-state electrolytes for sodium-ion battery–A short review. Nano Materials Science, 1(2). https://doi.org/10.1016/j.nanoms.2019.02.007 CR - Weber, A. Z., Mench, M. M., Meyers, J. P., Ross, P. N., Gostick, J. T., & Liu, Q. (2011). Redox flow batteries: A review. Içinde Journal of Applied Electrochemistry (C. 41, Sayı 10). https://doi.org/10.1007/s10800-011-0348-2 CR - Whittingham, M. S. (1974). Electrointercalation in transition-metal disulphides. Journal of the Chemical Society, Chemical Communications, 9, 328-329. https://doi.org/10.1039/C39740000328 CR - Winter, M., Barnett, B., & Xu, K. (2018). Before Li Ion Batteries. Chemical Reviews, 118(23), 11433-11456. https://doi.org/10.1021/ACS.CHEMREV.8B00422/ASSET/IMAGES/LARGE/CR-2018-00422Q_0014.JPEG CR - Yu, S., Guo, B., Zeng, T., Qu, H., Yang, J., & Bai, J. (2022). Graphene-based lithium-ion battery anode materials manufactured by mechanochemical ball milling process: A review and perspective. Composites Part B: Engineering, 246, 110232. https://doi.org/10.1016/J.COMPOSITESB.2022.110232 CR - Yuan, H., Luan, J., Liu, J., & Zhong, C. (2024). Hail to Daniell Cell: From Electrometallurgy to Electrochemical Energy Storage. Içinde Advanced Functional Materials (C. 34, Sayı 33). https://doi.org/10.1002/adfm.202400289 CR - Yue, L., Ma, J., Zhang, J., Zhao, J., Dong, S., Liu, Z., Cui, G., & Chen, L. (2016). All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Materials, 5, 139-164. https://doi.org/10.1016/J.ENSM.2016.07.003 CR - Zhang, J., Huang, H., Zhang, G., Dai, Z., Wen, Y., & Jiang, L. (2024). Cycle life studies of lithium-ion power batteries for electric vehicles: A review. Journal of Energy Storage, 93, 112231. https://doi.org/10.1016/J.EST.2024.112231 CR - Zhang, S. S. (2007). A review on the separators of liquid electrolyte Li-ion batteries. Içinde Journal of Power Sources (C. 164, Sayı 1). https://doi.org/10.1016/j.jpowsour.2006.10.065 CR - Zhao, E., Gu, Y., Fang, S., Yang, L., & Hirano, S. I. (2021). Systematic Investigation of Electrochemical Performances for Lithium-Ion Batteries with Si/Graphite Anodes: Effect of Electrolytes Based on Fluoroethylene Carbonate and Linear Carbonates. ACS Applied Energy Materials, 4(3), 2419-2429. https://doi.org/10.1021/ACSAEM.0C02946/ASSET/IMAGES/LARGE/AE0C02946_0009.JPEG CR - Zhu, L., & Chen, M. (2020). Research on spent LiFePO4 electric vehicle battery disposal and its life cycle inventory collection in China. International Journal of Environmental Research and Public Health, 17(23). https://doi.org/10.3390/ijerph17238828 CR - Zubi, G., Dufo-López, R., Carvalho, M., & Pasaoglu, G. (2018). The lithium-ion battery: State of the art and future perspectives. Renewable and Sustainable Energy Reviews, 89, 292-308. https://doi.org/10.1016/J.RSER.2018.03.002 UR - https://doi.org/10.5281/zenodo.14344328 L1 - https://dergipark.org.tr/en/download/article-file/4329032 ER -