TY - JOUR T1 - Design and Preliminary Validation of UAV-Based System for Remote Animal Anesthesia TT - İHA’ya Entegre Manipülatör Kullanılarak Anesteziyle Hayvanları Yakalamak İçin Bir Sistem Önerisi: Simülasyon ve Deneysel Doğrulama AU - Çabuk, Nihat PY - 2025 DA - August Y2 - 2025 JF - Gazi Journal of Engineering Sciences JO - GJES PB - Parantez Teknoloji WT - DergiPark SN - 2149-9373 SP - 188 EP - 205 VL - 11 IS - 2 LA - en AB - In this study, a model was proposed for performing remote anesthesia on animals using a quadrotor unmanned aerial vehicle (UAV). The proposed model integrates a manipulator into the UAV, and a mechanism system for throwing an anesthesia needle was mounted on this manipulator. A solid model of the entire proposed system was created, and a mathematical model of the system was developed. The validity of the proposed model was verified by examining the system parameters through simulation studies based on this mathematical model. Two different scenarios were constructed in the simulations. In the first scenario, the system locked on the target for a fixed position, while the second scenario was on a target that is in motion in all three dimensions. In both simulations, the UAV flew autonomously along a predetermined trajectory. The results obtained were presented graphically. In addition, the system for which a solid model was created was produced and preliminary tests were carried out in the outdoor environment. It has been shown that this proposed system can be used in a real environment. KW - Animal anesthesia KW - UAV KW - Design KW - Control KW - Simulation N2 - Bu çalışmada, dört rotorlu bir insansız hava aracı (İHA) kullanılarak hayvanların uzaktan anestezisi için bir model önerilmiştir. Önerilen model, İHA'ya bir manipülatör entegre etmiş ve bu manipülatöre anestezi iğnesi atmak için bir mekanizma sistemi monte edilmiştir. Önerilen sistemin tamamının katı bir modeli oluşturulmuş ve sistemin matematiksel modeli geliştirilmiştir. Önerilen modelin geçerliliği, bu matematiksel modele dayalı simülasyon çalışmaları yoluyla sistem parametrelerinin incelenmesiyle doğrulanmıştır. Simülasyonlarda iki farklı senaryo oluşturulmuştur. İlk senaryoda, sistem sabit bir pozisyondaki hedefe kilitlenirken, ikinci senaryo üç boyutta hareket halinde olan bir hedefin takibi üzerinedir. Her iki simülasyonda da İHA önceden belirlenmiş bir yörünge boyunca otonom olarak uçuş yaparak her iki görevi yapmaktadır. Simülasyonlara ilişkin elde edilen sonuçlar grafiksel olarak sunulmuştur. Ayrıca, katı modeli oluşturulan sistem üretilmiş ve dış ortamda ön testleri gerçekleştirilmiştir. Önerilen bu sistemin gerçek bir ortamda kullanılabileceği gösterilmiştir. CR - [1] Ş. Yıldırım, N. Çabuk, and V. Bakırcıoğlu, “Experimentally flight performances comparison of octocopter, decacopter and dodecacopter using universal UAV,” Measurement, vol. 213, no. February, p. 112689, 2023. doi: 10.1016/j.measurement.2023.112689 CR - [2] P. Shu, F. Li, J. Zhao, and M. Oya, “Robust Adaptive Control for A Novel Fully-Actuated Octocopter UAV with Wind Disturbance,” J. Intell. Robot. Syst. Theory Appl., vol. 103, no. 1, 2021. doi: 10.1007/s10846-021-01450-x CR - [3] N. Çabuk and Ş. Yıldırım, “Design, Modelling and Control of an Eight-Rotors UAV with Asymmetric Configuration for Use in Remote Sensing Systems,” J. Aviat., vol. 5, no. 2, pp. 72–81, Sep. 2021. doi: 10.30518/jav.943804 CR - [4] V. Bakırcıoğlu, N. Çabuk, and Ş. Yıldırım, “Experimental comparison of the effect of the number of redundant rotors on the fault tolerance performance for the proposed multilayer UAV,” Rob. Auton. Syst., vol. 149, p. 103977, Mar. 2022. doi: 10.1016/j.robot.2021.103977 CR - [5] S. Li, Z. Lv, L. Feng, Y. Wu, and Y. Li, “Nonlinear Cascade Control for a New Coaxial Tilt-rotor UAV,” Int. J. Control. Autom. Syst., vol. 20, no. 9, pp. 2948–2958, 2022. doi: 10.1007/s12555-021-0105-1 CR - [6] D. Sufiyan, L. S. T. Win, S. K. H. Win, Y. H. Pheh, G. S. Soh, and S. Foong, “An Efficient Multimodal Nature‐Inspired Unmanned Aerial Vehicle Capable of Agile Maneuvers,” Adv. Intell. Syst., vol. 5, no. 1, p. 2200242, 2023. doi: 10.1002/aisy.202200242 CR - [7] C. Vourtsis, V. C. Rochel, N. S. Müller, W. Stewart, and D. Floreano, “Wind Defiant Morphing Drones,” Adv. Intell. Syst., vol. 5, no. 3, pp. 1–8, 2023. doi: 10.1002/aisy.202200297 CR - [8] C. Lee, S. Kim, and B. Chu, “A Survey: Flight Mechanism and Mechanical Structure of the UAV,” Int. J. Precis. Eng. Manuf., vol. 22, no. 4, pp. 719–743, 2021. doi: 10.1007/s12541-021-00489-y CR - [9] D. Ribeiro et al., “Non-contact structural displacement measurement using Unmanned Aerial Vehicles and video-based systems,” Mech. Syst. Signal Process., vol. 160, p. 107869, 2021. doi: 10.1016/j.ymssp.2021.107869 CR - [10] A. Mitra, B. Bera and A. K. Das, "Design and Testbed Experiments of Public Blockchain-Based Security Framework for IoT-Enabled Drone-Assisted Wildlife Monitoring," IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Vancouver, BC, Canada, 2021. pp. 1-6, doi: 10.1109/INFOCOMWKSHPS51825.2021.9484468 CR - [11] S. Hirata, “Studying feral horse behavior from the sky,” Artif. Life Robot., vol. 27, no. 2, pp. 196–203, 2022. doi: 10.1007/s10015-022-00746-x CR - [12] Y. Cai et al., “Research on path generation and stability control method for UAV-based intelligent spray painting of ships,” J. F. Robot., vol. 39, no. 3, pp. 188–202, 2022. doi: 10.1002/rob.22044 CR - [13] H. U. Unlu, D. Chaikalis, A. Tsoukalas, and A. Tzes, “UAV Indoor Exploration for Fire-Target Detection and Extinguishing,” J. Intell. Robot. Syst. Theory Appl., vol. 108, no. 3, 2023. doi: 10.1007/s10846-023-01835-0 CR - [14] X. Liu, Z. R. Peng, L. Y. Zhang, and Q. Chen, “Real-time and Coordinated UAV Path Planning for Road Traffic Surveillance: A Penalty-based Boundary Intersection Approach,” Int. J. Control. Autom. Syst., vol. 20, no. 8, pp. 2655–2668, 2022. doi: 10.1007/s12555-020-0565-8 CR - [15] H. Durgun, E. Yılmaz İnce, M. İnce, H. O. Çoban, and M. Eker, “Evaluation of Tree Diameter and Height Measurements in UAV Data by Integrating Remote Sensing and Machine Learning Methods,” Gazi J. Eng. Sci., vol. 9, no. 4, pp. 113–125, 2023. doi: 10.30855/gmbd.0705s12 CR - [16] A. Altan and R. Hacıoğlu, “Model predictive control of three-axis gimbal system mounted on UAV for real-time target tracking under external disturbances,” Mech. Syst. Signal Process., vol. 138, p. 106548, Apr. 2020. doi: 10.1016/j.ymssp.2019.106548 CR - [17] H. Yao, R. Qin, and X. Chen, “Unmanned aerial vehicle for remote sensing applications - A review,” Remote Sens., vol. 11, no. 12, pp. 1–22, 2019. doi: 10.3390/rs11121443 CR - [18] A. Khan, S. Gupta, and S. K. Gupta, “Emerging UAV technology for disaster detection, mitigation, response, and preparedness,” J. F. Robot., vol. 39, no. 6, pp. 905–955, 2022. doi: 10.1002/rob.22075 CR - [19] M. Karaduman, A. Çınar, and H. Eren, “UAV Traffic Patrolling via Road Detection and Tracking in Anonymous Aerial Video Frames,” J. Intell. Robot. Syst. Theory Appl., vol. 95, no. 2, pp. 675–690, 2019. doi: 10.1007/s10846-018-0954-x CR - [20] S. Hamaza et al., “Sensor Installation and Retrieval Operations Using an Unmanned Aerial Manipulator,” IEEE Robot. Autom. Lett., vol. 4, no. 3, pp. 2793–2800, 2019. doi: 10.1109/LRA.2019.2918448 CR - [21] H. Bonyan Khamseh, F. Janabi-Sharifi, and A. Abdessameud, “Aerial manipulation—A literature survey,” Rob. Auton. Syst., vol. 107, pp. 221–235, 2018. doi: 10.1016/j.robot.2018.06.012 CR - [22] E. L. de Angelis and F. Giulietti, “Stability and control issues of multirotor suspended load transportation: An analytical closed–form approach,” Aerosp. Sci. Technol., vol. 135, p. 108201, 2023. doi: 10.1016/j.ast.2023.108201 CR - [23] E. Altuğ, M. E. Mumcuoğlu, I. Yüksel, and E. Altuğ, “Design of an Automatic Item Pick-up System for Unmanned Aerial Vehicles,” Celal Bayar Univ. J. Sci., vol. 16, no. 1, pp. 25–33, 2020. doi: 10.18466/cbayarfbe.529996 CR - [24] B. V. Vidyadhara et al., “Design and integration of a drone based passive manipulator for capturing flying targets,” Robotica, vol. 40, no. 7, pp. 2349–2364, 2022. doi: 10.1017/S0263574721001673 CR - [25] M. F. Ballesteros-Escamilla, D. Cruz-Ortiz, I. Chairez, and A. Luviano-Juárez, “Adaptive output control of a mobile manipulator hanging from a quadcopter unmanned vehicle,” ISA Trans., vol. 94, pp. 200–217, 2019. doi: 10.1016/j.isatra.2019.04.002 CR - [26] J. Liang, Y. Chen, N. Lai, and B. He, “Robust Observer-based Trajectory Tracking Control for Unmanned Aerial Manipulator,” Int. J. Control. Autom. Syst., vol. 21, no. 2, pp. 616–629, 2023. doi: 10.1007/s12555-021-0829-y CR - [27] W. Stewart, L. Guarino, Y. Piskarev, and D. Floreano, “Passive Perching with Energy Storage for Winged Aerial Robots,” Adv. Intell. Syst., vol. 5, no. 4, 2023. doi: 10.1002/aisy.202100150 CR - [28] M. L. Guillen-Climent, P. J. Zarco-Tejada, J. A. J. Berni, P. R. J. North, and F. J. Villalobos, “Mapping radiation interception in row-structured orchards using 3D simulation and high-resolution airborne imagery acquired from a UAV,” Precis. Agric., vol. 13, no. 4, pp. 473–500, 2012. doi: 10.1007/s11119-012-9263-8 CR - [29] S. Wang, J. Chen, and X. He, “An adaptive composite disturbance rejection for attitude control of the agricultural quadrotor UAV,” ISA Trans., vol. 129, pp pp. 564-579, Jan. 2022. doi: 10.1016/j.isatra.2022.01.012 CR - [30] Z. Zheng et al., “An efficient online citrus counting system for large-scale unstructured orchards based on the unmanned aerial vehicle,” J. F. Robot., no. November 2022, pp. 552–573, 2022. doi: 10.1002/rob.22147 CR - [31] X. Yang, X. Hu, H. Ye, W. Liu, and H. Shen, “Fraction-order MRAC Method Based Fault Tolerant Control for Plant Protection UAV With Actuator Failure and Uncertainty,” Int. J. Control. Autom. Syst., vol. 21, no. X, pp. 1–11, 2023. doi: 10.1007/s12555-021-1039-3 CR - [32] Ş. Yıldırım and B. Ulu, “Deep Learning Based Apples Counting for Yield Forecast Using Proposed Flying Robotic System,” Sensors, vol. 23, no. 13, p. 6171, Jul. 2023. doi: 10.3390/s23136171 CR - [33] H. Ucgun, U. Yuzgec, and C. Bayilmis, “A review on applications of rotary-wing unmanned aerial vehicle charging stations,” Int. J. Adv. Robot. Syst., vol. 18, no. 3, 2021. doi: 10.1177/17298814211015863 CR - [34] N. Yang et al., “Mapping potential human-elephant conflict hotspots with UAV monitoring data,” Glob. Ecol. Conserv., vol. 43, no. April, p. e02451, 2023. doi: 10.1016/j.gecco.2023.e02451 CR - [35] X. Li and L. Xing, “Use of Unmanned Aerial Vehicles for Livestock Monitoring based on Streaming K-Means Clustering,” IFAC-PapersOnLine, vol. 52, no. 30, pp. 324–329, 2019. doi: 10.1016/j.ifacol.2019.12.560 CR - [36] N. Rey, M. Volpi, S. Joost, and D. Tuia, “Detecting animals in African Savanna with UAVs and the crowds,” Remote Sens. Environ., vol. 200, no. March, pp. 341–351, 2017. doi: 10.1016/j.rse.2017.08.026 CR - [37] J. C. Hodgson, D. Holman, A. Terauds, L. P. Koh, and S. D. Goldsworthy, “Rapid condition monitoring of an endangered marine vertebrate using precise, non-invasive morphometrics,” Biol. Conserv., vol. 242, no. January, p. 108402, 2020. doi: 10.1016/j.biocon.2019.108402 CR - [38] G. N. C. Inoue et al., “Combined spinal and general anesthesia attenuate tumor promoting effects of surgery. An experimental animal study,” Ann. Med. Surg., vol. 75, no. February, 2022. doi: 10.1016/j.amsu.2022.103398 CR - [39] T. Bleeser, T. R. Hubble, M. Van de Velde, J. Deprest, S. Rex, and S. Devroe, “Introduction and history of anaesthesia-induced neurotoxicity and overview of animal models,” Best Pract. Res. Clin. Anaesthesiol., vol. 37, no.1, pp. 3-15, 2023. doi: 10.1016/j.bpa.2022.11.003 CR - [40] A. K. O. Alstrup, M. R. Dollerup, M. I. T. Simonsen, and M. H. Vendelbo, “Preclinical Imaging Studies: Protocols, Preparation, Anesthesia, and Animal Care,” Semin. Nucl. Med., 2023. doi: 10.1053/j.semnuclmed.2023.02.003 CR - [41] N. Pharmaceuticals, “WILDLIFE DARTING EQUIPMENT,” NexGen Pharmaceuticals, 2021. https://nexgenvetrx.com/blog/nondomesticsexotics/immobilizationsedation/wildlife-darting-equipment/ [Accessed Jun. 04, 2023]. CR - [42] J. Ortiz, M. Ando, and T. Miyazaki, “Numerical Simulation of Wind Drift of Arrows on the Olympic Venue for Tokyo 2020,” Athens J. Sport., vol. 7, no. 1, pp. 1–20, 2020. doi: 10.30958/ajspo.7-1-1 CR - [43] J. O. Hampton et al., “Animal welfare testing for shooting and darting free-ranging wildlife: a review and recommendations,” Wildl. Res., vol. 48, no. 7, p. 577, 2021. doi: 10.1071/WR20107 CR - [44] N. Çabuk, “Design and walking analysis of proposed four-legged glass cleaning robot,” Turkish J. Eng., vol. 7, no. 2, pp. 82–91, 2023. doi: 10.31127/tuje.1011320 CR - [45] M. A. Şen, V. Bakırcıoğlu, and M. Kalyoncu, “Inverse Kinematic Analysis of A Quadruped Robot,” Int. J. Sci. Technol. Res., vol. 6, no. 9, pp. 285–289, 2017, [Online]. Available: http://ethesis.nitrkl.ac.in/6980/1/2015_Panchanand_Phd_511ID101.pdf CR - [46] E. Ebeid, M. Skriver, K. H. Terkildsen, K. Jensen, and U. P. Schultz, “A survey of Open-Source UAV flight controllers and flight simulators,” Microprocess. Microsyst., vol. 61, pp. 11–20, Sep. 2018. doi: 10.1016/j.micpro.2018.05.002 CR - [47] N. Çabuk, “Design and Experimental Validation of an Adaptive Landing Gear for Safe Landing on Uneven Grounds of VTOL UAVs in the Context of Lightweight and Fast Adaptations,” Arab. J. Sci. Eng., vol. 48, no. 9, pp. 12331–12344, Sep. 2023. doi: 10.1007/s13369-023-07731-x CR - [48] ArduPilot Dev Team, “Advanced Configuration (Lua Scripts),” 2023. Available: https://ardupilot.org/copter/docs/common-lua-scripts.html. [Accessed: Oct. 12, 2024]. UR - https://dergipark.org.tr/en/pub/gmbd/issue//1580905 L1 - https://dergipark.org.tr/en/download/article-file/4346726 ER -