TY - JOUR T1 - Morpho-physiological and water use performance of soybean cultivars under drought stress at early growth stages AU - Ergin, Nurgül AU - Kulan, Engin Gökhan AU - Harmancı, Pınar AU - Kaya, Mehmet Demir PY - 2025 DA - March Y2 - 2024 DO - 10.31015/2025.1.2 JF - International Journal of Agriculture Environment and Food Sciences JO - int. j. agric. environ. food sci. PB - Gültekin ÖZDEMİR WT - DergiPark SN - 2618-5946 SP - 13 EP - 21 VL - 9 IS - 1 LA - en AB - Drought is an important environmental stress for soybean (Glycine max (L) Merr.), which frequently occurs under second-crop conditions in the Mediterranean region of Türkiye and negatively affects early plant growth. In this study, we investigated the effects of drought stress (soil water content maintained at a constant 50% field capacity) on the early growth stage (V3 stage) of different soybean cultivars (Ataem-7, BATEM Erensoy, Göksoy, and Lider). Twenty-seven-day-old soybean plants were exposed to drought stress for 20 days. Morphological (plant height, root length, seedling fresh and dry weight, root fresh and dry weight, and leaf area), physiological (leaf temperature, chlorophyll rate (CR), leaf relative water content (RWC), and electrolyte leakage (EL)), and water use (total water consumption (TWC), and water use efficiency (WUE)) traits were assessed. The results revealed a significant decrease in plant height, root length, leaf area, root and shoot fresh and dry weights, and RWC, and an increase in CR under drought stress. Although Lider and BATEM Erensoy exhibited better growth than the other cultivars under control conditions, their root and shoot growth decreased significantly under water stress. Notably, Ataem-7 presented a lower TWC and WUE difference between the drought treatment and the control, and this cultivar efficiently used water for dry matter production in the shoot and root parts. As a result, there were significant genotypic differences in drought susceptibility among the soybean cultivars, and Ataem-7 showed greater tolerance to drought than the other soybean cultivars did during the early growth stage. KW - Glycine max (L.) Merr. KW - Drought KW - Water use efficiency KW - Electrolyte leakage CR - Ahmadizadeh, M., Valizadeh, M., Zaefizadeh, M., Shahbazi, H. (2011). Antioxidative protection and electrolyte leakage in durum wheat under drought stress condition. Journal of Applied Sciences Research, 7(3), 236-246. CR - Aziez, A. F. (2023). Growth response of soybean (Glycine max L.) under drought stress condition. Research on Crops, 24(1), 73-81. CR - Basal, O., Szabó, A., Veres, S. (2020). Physiology of soybean as affected by PEG-induced drought stress. Current Plant Biology, 22, 100135. CR - Batool, T., Ali, S., Seleiman, M. F., Naveed, N. H., Ali, A., Ahmed, K., Abid, M., Rizman, M., Shadid, M.R., Alotaibi, M., Al-Ashkar, İ., Mubushar, M. (2020). Plant growth promoting rhizobacteria alleviates drought stress in potato in response to suppressive oxidative stress and antioxidant enzymes activities. Scientific Reports, 2020(10), 16975. https://doi.org/10.1038/s41598-020-73489-z. CR - Cosmulescu, S., Scrieciu, F., Manda, M. (2020). Determination of leaf characteristics in different medlar genotypes using the ImageJ program. Horticultural Science, 47(2), 117-21. https://doi.org/10.17221/97/2019-HORTSCI CR - Delavar, E. G., Faramarzi, A., Ajalli, J., Nazari, N., Abdi, M. (2023). Piriformospora indica symbiosis and iron oxide nanoparticles alleviates drought stress in soybean plants through improved on photosynthetic gas exchange and sucrose phosphate synthase and acid phosphatase. Romanian Agricultural Research, 40, 1-14. CR - Desclaux, D., Huynh, T. T., Roumet, P. (2000). Identification of soybean plant characteristics that indicate the timing of drought stress. Crop Science, 40(3), 716-722. CR - Dong, S., Jiang, Y., Dong, Y., Wang, L., Wang, W., Ma, Z., Yan, C., Ma, C., Liu, L. (2019). A study on soybean responses to drought stress and rehydration. Saudi Journal of Biological Sciences, 26, 2006-2017. CR - Ergin, N., Uzun, O., Kaya, M. D. (2023). Changes in plant growth and mineral concentrations of soybean cultivars under waterlogging stress. Journal of Elementology, 28(2), 307-317. CR - FAO (2024). Food and Agriculture Organization of the United Nations. https://www.fao.org/faostat/en/#home CR - Farajollahi, Z., Eisvand, H. R., Nazarian-Firouzabadi, F., Nasrollahi, A. H. (2023). Nano-Fe nutrition improves soybean physiological characteristics, yield, root features and water productivity in different planting dates under drought stress conditions. Industrial Crops and Products, 198, 116698. CR - Fatema, M. K., Mamun, M. A. A., Sarker, U., Hossain, M. S., Mia, M. A. B., Roychowdhury, R., Ercisli, S., Marc, R. A., Babalola, O. O., Karim, M. A. (2023). Assessing morpho-physiological and biochemical markers of soybean for drought tolerance potential. Sustainability, 15(2), 1427. CR - Fehr, W. R. (1980). Soybean. In: Fehr, W.R., Hadley, H.H. (Eds) Hybridization of Crop Plants. The American Society of Agronomy Inc, Wisconsin, USA, 589-599. CR - Fehr, W. R., Caviness, C. E., Burmood, D. T., Pennington, J. S. (1971). Stage of development descriptions for soybeans, Glycine max (L.) Merrill. Crop Science, 11(6), 929-931. CR - Gebre, M. G., Earl, H. J. (2021). Soil water deficit and fertilizer placement effects on root biomass distribution, soil water extraction, water use, yield, and yield components of soybean [Glycine max (L.) Merr.] grown in 1-m rooting columns. Frontiers in Plant Science, 12, 581127. https://doi.org/10.3389/fpls.2021.581127 CR - Guo, Y., Huang, G., Wei, Z., Feng, T., Zhang, K., Zhang, M., Li, Z., Zhou, Y., Duan, L. (2023). Exogenous application of coronatine and alginate oligosaccharide to maize seedlings enhanced drought tolerance at seedling and reproductive stages. Agricultural Water Management, 279, 108185. CR - Guzzo, M. C., Costamagna, C., Salloum, M. S., Rotundo, J. L., Monteoliva, M. I., Luna, C. M. (2021). Morpho‐physiological traits associated with drought responses in soybean. Crop Science, 61(1), 672-688. CR - He, J., Du, Y. L., Wang, T., Turner, N. C., Yang, R. P., Jin, Y., Xi, Y., Zhang, C., Cui, T., Fang, X., Li, F. M. (2017). Conserved water use improves the yield performance of soybean (Glycine max (L.) Merr.) under drought. Agricultural Water Management, 179, 236-245. CR - Hniličková, H., Hnilička, F., Orsák, M., Hejnák, V. (2019). Effect of salt stress on growth, electrolyte leakage, Na+ and K+ content in selected plant species. Plant Soil and Environment, 65, 90-96. CR - Hufstetler, E. V., Boerma, H. R., Carter, T. E., Earl, H. J. (2007). Genotypic variation for three physiological traits affecting drought tolerance in soybean. Crop Science, 47(1), 25-35. CR - Ingwers, M. W., Steketee, C. J., Yadav, S. K., Li, Z. (2022). Relationships among carbon isotope composition, growth, and foliar nitrogen in soybean. Journal of Crop Improvement, 36(90-107). https://doi.org/10.1080/15427528.2021.1910092. CR - Kaya, G. (2023). Ameliorative effects of foliar potassium nitrate on the growth, physiological, and stomatal properties of lettuce plants under salinity stress. Journal of Plant Nutrition, 46(12), 2882-2892. CR - Khan, A., Sovero, V., Gemenet, D. (2016). Genome-assisted breeding for drought resistance. Current Genomics, 17, 330-342. https://doi.org/10.2174/1389202917999160211101417 CR - Liyanage, D. K., Chathuranga, I., Mori, B. A., Thilakarathna, M. S. (2022). A simple, semi-automated, gravimetric method to simulate drought stress on plants. Agronomy, 12, 349. https://doi.org/10.3390/agronomy12020349 CR - Lumactud, R. A., Dollete, D., Liyanage, D. K., Szczyglowski, K., Hill, B., Thilakarathna, M. S. (2023). The effect of drought stress on nodulation, plant growth, and nitrogen fixation in soybean during early plant growth. Journal of Agronomy and Crop Science, 209, 345-354. https://doi.org/10.1111/jac.12627 CR - Maleki, A., Naderi, A., Naseri, R., Fathi, A., Bahamin, S., Maleki, R. (2013). Physiological performance of soybean cultivars under drought stress. Bulletin of Environment, Pharmacology and Life Sciences, 2(6), 38-44. CR - Miranda, R. S., Fonseca, B. S. F., Pinho, D. S., Batista, J. Y. N., Brito, R. R., Silva, E. M., Ferreira, W. S., Costa J. H., Lopes, M. S., Sousa, R. H. B., Neves, L. F., Penha, J. A. F., Santos, A. S., Lima, J. J. P., Paula-Marinho, S. O., Neto, F. A., Aguiar, E. S., Santos, C. P., Gomes-Filho, E. (2023). Selection of soybean and cowpea cultivars with superior performance under drought using growth and biochemical aspects. Plants, 12(17), 3134. CR - Mishra, S., Patidar, D. (2023). Effect of drought stress on growth of soybean under seedling stage. International Journal of Economic Plants, 10(3), 231-245. CR - Poudel, S., Vennam, R. R., Shrestha, A., Reddy, K. R., Wijewardane, N. K., Reddy, K. N., Bheemanahalli R. (2023). Resilience of soybean cultivars to drought stress during flowering and early-seed setting stages. Scientific Reports, 13(1), 1277. CR - Pratap, A., Gupta, S. K., Kumar, J., Solanki, R. K. (2012). Soybean. In: Gupta, S.K. (Eds) Technological Innovations in Major World Oil Crops, Volume 1: Breeding. Springer New York, USA, 293-321. CR - Puangbut, D., Jogloy, S., Vorasoot, N., Akkasaeng, C., Kesmala, T., Rachaputi, R. C., Wright, G. C., Patanothai, A. (2009). Association of root dry weight and transpiration efficiency of peanut genotypes under early season drought. Agricultural Water Management, 96(10), 1460-1466. https://doi.org/10.1016/j.agwat.2009.04.018 CR - Sadok, W., Sinclair, T. R. (2011). Crops yield increase under water-limited conditions: review of recent physiological advances for soybean genetic improvement. Advances in Agronomy, 113, 325-351. CR - Samarah, N. H., Mullen, R. E., Cianzio, S. R., Scott, P. (2006). Dehydrin-like proteins in soybean seeds in response to drought stress during seed filling. Crop Science, 46, 2141-2150. CR - Simondi, S., Casaretto, E., Quero, G., Ceretta, S., Bonnecarrère, V., Borsani, O. (2022). A simple and accurate method based on a water-consumption model for phenotyping soybean genotypes under hydric deficit conditions. Agronomy, 12(3), 575. CR - Sincik, M., Oral, H. S., Göksoy, T., Turan, Z. M. (2008). Determination of some yield and quality characters of different soybean (Glycine max L. Merr.) lines under Bursa ecological conditions. Journal of Agricultural Faculty of Uludağ University, 22(1), 55-62. CR - Sinclair, T. R., Messina, C. D., Beatty, A., Samples, M. (2010). Assessment across the United States of the benefits of altered soybean drought traits. Agronomy Journal, 102(2), 475-482. CR - Tiwari, P. N., Tiwari, S., Sapre, S., Tripathi, N., Payasi, D. K., Singh, M., Thakur, S., Sharma, M., Tiwari, S., Tripathi, M. K. (2023). Prioritization of physio-biochemical selection indices and yield-attributing traits toward the acquisition of drought tolerance in chickpea (Cicer arietinum L.). Plants, 12(18), 3175. CR - TUIK (2024). Turkish Statistical Institute. https://biruni.tuik.gov.tr/medas/?locale=tr CR - Wijewardana, C., Alsajri, F. A., Irby, J. T., Krutz, L. J., Golden, B. R., Henry, W. B. (2021). Water deficit effects on soybean root morphology and early-season vigor. Agronomy, 9(12), 836. https://doi.org/10.3390/agronomy9120836 CR - Yan, C., Song, S., Wang, W., Wang, C., Li, H., Wang, F., Li, S., Sun, X. (2020). Screening diverse soybean genotypes for drought tolerance by membership function value based on multiple traits and drought tolerant coefficient of yield. B.M.C. Plant Biology, 20, 321. CR - Yang, X., Kwon, H., Kim, M. Y., Lee, S. H. (2023). RNA-seq profiling in leaf tissues of two soybean (Glycine max [L.] Merr.) cultivars that show contrasting responses to drought stress during early developmental stages. Molecular Breeding, 43(5), 1-19. CR - Zegaoui, Z., Planchais, S., Cabassa, C., Djebbar, R., Belbachir, O. A., Carol, P. (2017). Variation in relative water content, proline accumulation and stress gene expression in two cowpea landraces under drought. Journal of Plant Physiology, 218, 26-34. UR - https://doi.org/10.31015/2025.1.2 L1 - https://dergipark.org.tr/en/download/article-file/4349883 ER -