TY - JOUR T1 - Determination of the development of settlements above earthquake susceptibility classes in Atakum district (Samsun/Türkiye) AU - Şen, Halithan AU - Bahadır, Muhammet AU - Ocak, Fatih PY - 2024 DA - October Y2 - 2024 DO - 10.26833/ijeg.1465072 JF - International Journal of Engineering and Geosciences JO - IJEG PB - Murat YAKAR WT - DergiPark SN - 2548-0960 SP - 390 EP - 405 VL - 9 IS - 3 LA - en AB - It is not possible to predict and prevent earthquakes in advance. Until now only a few seconds of time can be saved with prediction studies. Therefore, the most logical solution to overcome earthquakes with the least damage is to implement risk management plans. One of the most important studies carried out within the scope of these plans is to determine the earthquake susceptibility of the regions and accordingly, to identify the suitable areas for new settlements. The purpose of the study is to evaluate the extent of earthquake susceptibility in Atakum district and analyse its impact on the developing urban area. To determine the susceptibility, Geographic Information Systems (GIS) and Analytical Hierarchy Process (AHP) were used. For the application of the AHP method, 6 main geographical factors and 28 sub-factors including lithology, slope, distance to fault lines, landforms, maximum ground acceleration and soil permeability were analysed. The rate of weight was calculated for all factors and an earthquake susceptibility map was produced by weighted overlay. Then, the urban development process of Atakum district was determined with satellite images. In order to examine the development of the urban area on earthquake susceptibility classes in the last 23 years, Landsat 7 ETM for 2000 and Landsat 8 OLI/TIRS satellite images for 2013 and 2023 were used. According to the results obtained, the residential areas of Atakum city, especially on the coastline, in the embankment areas and on the alluvial plain floors, are located in the high and very high earthquake susceptibility area. KW - Earthquake Susceptibility KW - Settlement Areas KW - Remote Sensing KW - Geographic Information Systems KW - Atakum CR - 1. Hyndman, D., & Hyndman, D. (2015). Natural hazard and disaster (50. Ed.). Cengage. Boston. ISBN: 978-1-305-58169-2. www.cengagebrain.com CR - 2. Özey, R., & Ünlü, M. (2021). Afetler ve afet yönetimi. Aktif Yayınevi: İstanbul. CR - 3. Keller E. A., & DeVecchio D. E. (2019). Natural Hazards, Earth’s Processes as Hazards, Disasters and Catastrophes (50. Ed.). Routledge. New York. ISBN: 9781315164298. www.routledgetextbooks.com/textbooks/9781138057227/ CR - 4. Cassidy, J. F. (2013). Earthquake, in: Bobrowsky, P.T (Ed.)., Encyclopedia of Earth Sciences Series: Encyclopedia of Natural Hazards. Springer, pp. 208-223. ISBN: 978-90-481-8699-0. https://link.springer.com/referenceworkentry/10.1007/978-1-4020-4399-4_104 CR - 5. McKenzie, D. (1972). Active tectonics of the Mediterranean region. Geophysical Journal of the Royal Astronomical Society, 30 (2), 109-185. https://doi.org/10.1111/j.1365-246X.1972.tb02351.x CR - 6. Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., Ozener, H., Kadirov, F., Guliev, I., Stepanyan, R., Nadariya, M., Hahubia, G., Mahmoud, S., Sakr, K., ArRajehi, A., Paradissis, D., Al-Aydrus, A., Prilepin, M., Guseva, T., Evren, E., Dmitrotsa, A., Filikov, S.V., Gomez, F., Al-Ghazzi, R., & Karam, G. (2006). GPS constraints on continental deformation in the Africa‐Arabia‐Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research: Solid Earth. 111, (B5). https://doi.org/10.1029/2005JB004051 CR - 7. Le Pichon, X., & Kreemer, C. (2010). The Miocene-to-present kinematic evolution of the Eastern Mediterranean and Middle East and its implications for dynamics. Annual Review of Earth and Planetary Sciences, 38, 323-351. https://doi.org/10.1146/annurev-earth-040809-152419 CR - 8. Bozkurt, E. (2001). Neotectonics of Turkey–a synthesis. Geodinamica Acta, 14 (1-3), 3-30. https://doi.org/10.1080/09853111.2001.11432432 CR - 9. Nemutlu, Ö. F., Sarı, A., & Balun, B. (2023). Comparison of Actual Loss of Life and Structural Damage in 06 February 2023 Kahramanmaraş Earthquakes (Mw 7.7-Mw 7.6) with Estimated Values. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 23(5), 1222-1234. https://doi.org/10.35414/akufemubid.1302254 CR - 10. Zambrano, A. M., Perez, I., Palau, C., & Esteve, M. (2017). Technologies of Internet of Things applied to an Earthquake Early Warning System. Future Generation Computer Systems, 75, 206-215. https://doi.org/10.1016/j.future.2016.10.009 CR - 11. Cremen, G., Bozzoni, F., Pistorio, S., & Galasso. C. (2022). Developing a risk-informed decision-support system for earthquake early warning at a critical seaport. Reliability Engineering & System Safety, 218 (A), 108035. https://doi.org/10.1016/j.ress.2021.108035 CR - 12. Lin, Y., Chan, R. W. K., & Tagawa, H. (2020). Earthquake early warning-enabled smart base isolation system. Automation in Construction, 115, 103203. https://doi.org/10.1016/j.autcon.2020.103203 CR - 13. McBride, S. K., Sumy, D. F., Llenos, A. L., Parker, G. A., McGuire, J., Saunders, J. K., Meier, M, Schuback, P., Given, D., & De Groot, R. (2023). Latency and geofence testing of wireless emergency alerts intended for the ShakeAlert® earthquake early warning system for the West Coast of the United States of America. Safety Science, 157, 105898. https://doi.org/10.1016/j.ssci.2022.105898 CR - 14. Proag, V. (2014). The Concept of Vulnerability and Resilience. Procedia Economics and Finance, 18, 369-376. https://doi.org/10.1016/S2212-5671(14)00952-6 CR - 15. Bello, O. M., & Aina, Y. A. (2014). Satellite remote sensing as a tool in disaster management and sustainable development: towards a synergistic approach. Procedia-Soc. Behav. Sci., 120, 365-373. https://doi.org/10.1016/j.sbspro.2014.02.114 CR - 16. Msabi, M. M., & Makonyo, M. (2021). Flood susceptibility mapping using GIS and multi-criteria decision analysis: A case of Dodoma region, central Tanzania. Remote Sens. Appl. Soc. Environ., 21, 100445. https://doi.org/10.1016/j.rsase.2020.100445 CR - 17. Al Kalbani, K., & Rahman, A. A. (2022). 3D city model for monitoring flash flood risks in Salalah, Oman. International Journal of Engineering and Geosciences, 7(1), 17-23. https://doi.org/10.26833/ijeg.857971 CR - 18. Partigöç, N. S., & Dinçer, C. (2024). Coğrafi bilgi sistemleri (CBS) tabanlı afet risk analizi: Denizli ili örneği. Geomatik, 9(1), 27-44. https://doi.org/10.29128/geomatik.1261051 CR - 19. Demir, M., & Altaş, N. T. (2024). Kars kentinde deprem hasar risk potansiyeli taşıyan alanların CBS tabanlı AHP analizlerine dayalı olarak belirlenmesi. Geomatik, 9(1), 123-140. https://doi.org/10.29128/geomatik.1375650 CR - 20. Mancini, F., Ceppi, C., & Ritrovato, G. (2010). GIS and statistical analysis for landslide susceptibility mapping in the Daunia area, Italy. Nat. Hazards Earth Syst. Sci., 10, 1851-1864. https://doi.org/10.5194/nhess-10-1851-2010 CR - 21. Vicente, R., Parodi, S., Lagomarsino, S., Vartum, H., & Silva, J.A.R.M. (2011). Seismic vulnerability and risk assessment: case study of the historic city centre of Coimbra, Portugal. Bull Earthquake Eng., 9, 1067-1096. https://doi.org/10.1007/s10518-010-9233-3 CR - 22. Tarragüel, A. A., Krol, B., & Van Westen, C. (2012). Analysing the possible impact of landslides and avalanches on cultural heritage in Upper Svaneti, Georgia. J. Cult. Herit., 13, 453-461. https://doi.org/10.1016/j.culher.2012.01.012 CR - 23. Zebardast, E. (2013). Constructing a social vulnerability index to earthquake hazards using a hybrid factor analysis and analytic network process (F’ANP) model. Nat Hazards., 65, 1331-1359. https://doi.org/10.1007/s11069-012-0412-1 CR - 24. Romanescu, G., & Nicu, I. (2014). Risk maps for gully erosion processes affecting archaeological sites in Moldavia, Romania. Z. Geomorphol., 58 (4), 509–523. https://doi.org/10.1127/0372-8854/2014/0133 CR - 25. Nicu, I.C., & Asăndulesei, A. (2018). GIS-based evaluation of diagnostic areas in landslide susceptibility analysis of Bahluieț River Basin (Moldavian Plateau, NE Romania). Are Neolithic sites in danger? Geomorphology., 314, 27–41. https://doi.org/10.1016/j.geomorph.2018.04.010 CR - 26. Shahri, A.A., Spross, J., Johansson, F., & Larsson, S. (2019). Landslide susceptibility hazard map in southwest Sweden using artificial neural network. Catena., 183, 104225. https://doi.org/10.1016/j.catena.2019.104225 CR - 27. Şen, H., Aylar, F., Zeybek, H. İ., Şatır, E., & Enterili, Z. (2022). Budaközü Çayı Havzasının (Sungurlu/Çorum) RUSLE Modeli ile Erozyon Risk Analizinin Değerlendirilmesi, in: Sönmez, S. (Ed.), Sosyal, Beşeri ve İdari Bilimler Alanında Yeni Trendler II. Duvar Yayınları, İzmir, pp. 331-360. https://www.duvaryayinlari.com/Webkontrol/IcerikYonetimi/Dosyalar/sosyal-2-sistem-compressed_icerik_g3496_Jpi8Ggrw.pdf CR - 28. Endalew, T., & Biru, D. (2022). Soil erosion risk and sediment yield assessment with Revised Universal Soil Loss Equation and GIS: The case of Nesha watershed, Southwestern Ethiopia. Result in Geophysical Sciences., 12, 100049. https://doi.org/10.1016/j.ringps.2022.100049 CR - 29. Olika, G., Fikadu, G., & Gedefa, B. (2023). GIS based soil loss assessment using RUSLE model: A case of Horo district, western Ethiopia. Heliyon., 9 (2), e13313. https://doi.org/10.1016/j.heliyon.2023.e13313 CR - 30. Sichugova, L., & Fazilova, D. (20249. Study of the seismic activity of the Almalyk-Angren industrial zone based on lineament analysis. International Journal of Engineering and Geosciences, 9(1), 1-11. https://doi.org/10.26833/ijeg.1192118 CR - 31. Banica A., Rosu L., Muntele I., & Grozavu A. (2017). Towards Urban Resilience: A Multi-Criteria Analysis of Seismic Vulnerability in Iasi City (Romania). Sustainability. 9 (2), 270. https://doi.org/10.3390/su9020270 CR - 32. Kermanshah, A, & Derrible, S. (2016). A geographical and multi-criteria vulnerability assessment of transportation networks against extreme earthquakes. Reliability Engineering & System Safety, 153, 39-49. https://doi.org/10.1016/j.ress.2016.04.007 CR - 33. Shadmaan, S. Md., & Samsunnahar, P. (20239. An assessment of earthquake vulnerability by multi-criteria decision-making method. Geohazard Mechanics, 1(1), 94-102. https://doi.org/10.1016/j.ghm.2022.11.002 CR - 34. Yariyan, P., Zabihi, H., Wolf, I.D., Karami, M., & Amiriyan, S. (2020). Earthquake risk assessment using an integrated Fuzzy Analytic Hierarchy Process with Artificial Neural Networks based on GIS: A case study of Sanandaj in Iran. International Journal of Disaster Risk Reduction, 50, 101705. https://doi.org/10.1016/j.ijdrr.2020.101705 CR - 35. Ocak, F., & Bahadır, M. (2022). Analytical Hierarchy Process for earthquake susceptibility analysis using GIS techniques: A case study Basin of Lake Ladik in Samsun, Turkey. The Journal of Kesit Academy, 33, 322-348. DOI: 10.29228/kesit.64705 CR - 36. Turoğlu, H. (2004). Zemin sıvılaşmasının 17 Ağustos 1999 depreminde Adapazarı’ndaki hasara etkisi. İstanbul Üniversitesi Edebiyat Fakültesi Coğrafya Bölümü Coğrafya Dergisi, 12, 63-74. Retrieved from https://dergipark.org.tr/tr/download/article-file/231194 CR - 37. Sönmez, M. E. (2011). An analysis of the earthquake damage risk based on Geographic Information System (GIS)as example: Zeytinburnu (Istanbul). Turkish Geographical Review, 56, 11-22. Retrieved from https://dergipark.org.tr/tr/pub/tcd/issue/21225/227787 CR - 38. Özşahin, E. (2014). Coğrafi Bilgi Sistemleri (CBS) ve Analitik Hiyerarşi Süreci (AHS) kullanılarak Tekirdağ ilinde deprem hasar riski analizi. International Journal of Human Sciences, 11(1), 861-879. http://dx.doi.org/10.14687/ijhs.v11i1.2816 CR - 39. Palchaudhuri, M., & Biswas, S. (2016). Application of AHP with GIS in drought risk assessment for Puruliya district, India, Natural Hazards. 84. 1905–1920. https://doi.org/10.1007/s11069-016-2526-3 CR - 40. Ocak, F. (2023). Ladik Gölü Havzası’nda (Samsun) akıllı doğal afet yönetimi. Unpublished Doctoral Thesis. Ondokuz Mayıs University Graduate Education Institute, Department of Geography, 808247, Samsun. CR - 41.Saaty, T. L. (1989). Hierarchical-Multiobjective systems. Control-Theory and Advanced Technology, 5(4). 485-489. CR - 42. Intarawichian, N., & Dasananda, S. (2010). Analytical hierarchy process for landslide susceptibility mapping in lower Mae Chaem Watershed, Northern Thailand. Suranaree Journal of Science & Technology. 17 (3). 1-16. https://www.thaiscience.info/journals/ CR - 43. Cai, Z., Zhong, S., Jiang, W., & Lei, M. (2011). A schema of ecological environment sensitivity evaluation based on GIS, International Conference on Multimedia Technology, Hangzhou, China, 2011, 5250-5255. https://doi.org/10.1109/ICMT.2011.6002704 CR - 44. Goepel, K. D. (2013). Implementing the analytic hierarchy process as a standard method for multi-criteria decision making in corporate enterprises-A new AHP excel template with multiple inputs. Proceedings of the International Symposium on the Analytic Hierarchy Process, Kuala Lumpur, 2013. https://doi.org/10.13033/isahp.y2013.047 CR - 45. Fentahun, T. M., Bagyaraj, M., Melesse, M. A., Korme, T. (2021). Seismic hazard sensitivity assessment in the Ethiopian Rift, using an integrated approach of AHP and DInSAR methods. The Egyptian Journal of Remote Sensing and Space Sciences, 24(3), Part 2, 735-744. https://doi.org/10.1016/j.ejrs.2021.05.001 CR - 46. Malakar, S., Rai, A. K. (2023). Estimating seismic vulnerability in West Bengal by AHP-WSM and AHP-VIKOR. Natural Hazards Research, 3(3), 464,473. https://doi.org/10.1016/j.nhres.2023.06.001 CR - 47. Bhadran, A., Duarah, B. P, Girishbai, D., Achu, A. L., Lahon, S., Jesiya, N. P., Vijesh, V. K., Gopinat, G. (2024). Multi-model seismic susceptibility assessment of the 1950 great Assam earthquake in the Eastern Himalayan front. Geosystems and Geoenvironment, 3(3), 100270. https://doi.org/10.1016/j.geogeo.2024.100270 CR - 48. Erinç, S. (2000). Jeomorfoloji-I. Der Yayınları. CR - 49. Nichols, D. R., & Buchanan-Banks, J. M. (1974). Seismic hazards and land-use planning. U.S. Geology Survey, Circular 690. https://doi.org/10.3133/cir690 CR - 50. Vallejo, L. E., & Shettima, M. (1996). Fault movement and its impact on ground defor-mations and engineering structures. Engineering Geology, 43(2-3), 119-133. https://doi.org/10.1016/0013-7952(96)00055-5 CR - 51. Bayrak, E., 2019. Estimation of the peak ground acceleration for Eastern Turkey. European Journal of Science and Technology, (17), 676-681. https://doi.org/10.31590/ejosat.637938 CR - 52. Nath, S. K., & Thingbaijam, K. K. S. (2009). Seismic hazard assessment-a holistic micro-zonation approach. Nat. Hazards Earth Syst. Sci., 9(4), p. 1445-1459. https://doi.org/10.5194/nhess-9-1445-2009 CR - 53. Karadaş, A., & Öner, E. (2021). 30 Ekim 2020 Effects of the alluvial geomorphology on the damage of the Sisam Earthquake in the Bornova Plain. Journal of Geography, 42, 139-153. https://doi.org/10.26650/JGEOG2021-872890 CR - 54. Alpaslan, N. (2013). Soil liquefaction and mechanism. Batman University Journal of Life Sciences, 3(2), 67-89. Retrieved from https://dergipark.org.tr/tr/pub/buyasambid/issue/29820/320770 UR - https://doi.org/10.26833/ijeg.1465072 L1 - https://dergipark.org.tr/en/download/article-file/4374004 ER -