TY - JOUR T1 - Leveraging Deep Learning in Remote Sensing: A Novel Approach for Agricultural Greenhouse Detection and Innovation Management AU - Tomco, Vilma AU - Grabocka, Erika AU - Harizaj, Miranda PY - 2025 DA - July Y2 - 2024 DO - 10.26833/ijeg.1587264 JF - International Journal of Engineering and Geosciences JO - IJEG PB - Murat YAKAR WT - DergiPark SN - 2548-0960 SP - 221 EP - 230 VL - 10 IS - 2 LA - en AB - Innovation management plays a pivotal role in harnessing advanced technologies to drive progress across diverse fields. In this context, integrating deep learning models within remote sensing technologies presents transformative potential for monitoring, change detection, analysis, and decision-making in fields such as agriculture, urban planning, and environmental studies. This study examines the role of sophisticated deep learning approaches in analyzing high-resolution satellite imagery to improve the detection of agricultural greenhouses. Using MMSegmentation (DeepLabv3Plus) with multispectral data at 0.7-meter resolution, the research addresses the limitations of traditional methods by substantially enhancing detection accuracy and efficiency. To address data scarcity and increase model robustness, advanced data augmentation techniques—such as rotations, scaling, and flipping - expand dataset diversity, fostering adaptability and performance under diverse conditions. The study also assesses the impact of environmental factors, including seasonal variations and weather, on model performance. Suggested improvements include expanding the dataset to encompass a wider variety of greenhouse types and conditions, incorporating high-resolution or hyperspectral imagery for finer details, and building multi-temporal datasets to capture dynamic environmental changes. The findings underscore the importance of advanced innovation management in enhancing remote sensing applications, offering actionable insights for agricultural management in Albania and similar regions. This research contributes to the broader field of innovation management by showcasing how deep learning can revolutionize practical applications in agriculture KW - Deep Learning Models KW - Innovation Management KW - Object Detection – Greenhouses KW - Remote Sensing CR - Pak, D. N. B., Kırtıloğlu, O. S., Kayalık, M., & Polat, Z. A. (2023). The transformation from e-government to e-land administration in Türkiye: A SWOT-based assessment analysis. International Journal of Engineering and Geosciences, 8(3), 290–300. https://dergipark.org.tr/tr/download/article-file/2571001 CR - Mohanty, S. P., Czakon, J., Kaczmarek, K. A., Pyskir, A., Tarasiewicz, P., Kunwar, S., & Schilling, M. (2020). Deep learning for understanding satellite imagery: An experimental survey. Frontiers in Artificial Intelligence, 3, 534696. https://doi.org/10.3389/frai.2020.534696 CR - Taye, M. M. (2023). Understanding of machine learning with deep learning: Architectures, workflow, applications, and future directions. Computers, 12(5), 91. https://doi.org/10.3390/computers12050091 CR - Wang, L., Zhang, M., Gao, X., & Shi, W. (2024). Advances and challenges in deep learning-based change detection for remote sensing images: A review through various learning paradigms. Remote Sensing, 16(5), 804. https://doi.org/10.3390/rs16050804 CR - Sisodiya, N., Dube, N., & Thakkar, P. (2020). Next-generation artificial intelligence techniques for satellite data processing. In Artificial Intelligence Techniques for Satellite Image Analysis (pp. 235–254). CR - Ma, L., Liu, Y., Lu, Y., Zhang, X., Ye, Y., Yin, G., & Alan, B. (2019). Deep learning in remote sensing applications: A meta-analysis and review. ISPRS Journal of Photogrammetry and Remote Sensing, 152, 166–177. https://doi.org/10.1016/j.isprsjprs.2019.04.015 CR - Zhang, C., Jiang, W., Zhang, Y., Wang, W., Zhao, Q., & Wang, C. (2022). Transformer and CNN hybrid deep neural network for semantic segmentation of very-high-resolution remote sensing imagery. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–20. https://doi.org/10.1109/TGRS.2022.3144894 CR - Konopczyński, T., Heiman, R., Woźnicki, P., Gniewek, P., Duvernoy, M. C., Hallatschek, O., & Hesser, J. (2020). Instance segmentation of densely packed cells using a hybrid model of U-net and mask R-CNN. In Artificial Intelligence and Soft Computing: 19th International Conference, ICAISC 2020, Zakopane, Poland, October 12–14, 2020, Proceedings, Part I (Vol. 19). Springer International Publishing. https://doi.org/10.1007/978-3-030-61401-0_58 CR - Temenos, A., Temenos, N., Doulamis, A., & Doulamis, N. (2022). On the exploration of automatic building extraction from RGB satellite images using deep learning architectures based on U-Net. Technologies, 10(1), 19. https://doi.org/10.3390/technologies10010019 CR - Nguyen, T. T., Hoang, T. D., Pham, M. T., Vu, T. T., Nguyen, T. H., Huynh, Q. T., & Jo, J. (2020). Monitoring agriculture areas with satellite images and deep learning. Applied Soft Computing, 95, 106565. https://doi.org/10.1016/j.asoc.2020.106565 CR - Ghildiyal, S., Goel, N., Singh, S., Lal, S., Kawsar, R., El Saddik, A., & Saini, M. (2024). SSGAN: Cloud removal in satellite images using spatiospectral generative adversarial network. European Journal of Agronomy, 161, 127333. https://doi.org/10.1016/j.eja.2024.127333 CR - Molini, A. B., Valsesia, D., Fracastoro, G., & Magli, E. (2019). Deepsum: Deep neural network for super-resolution of unregistered multitemporal images. IEEE Transactions on Geoscience and Remote Sensing, 58(5), 3644–3656. https://doi.org/10.1109/TGRS.2019.2959248 CR - Biyik, M., Atik, M., & Duran, Z. (2023). Deep learning-based vehicle detection from orthophoto and spatial accuracy analysis. International Journal of Engineering and Geosciences, 8(2), 138–145. Retrieved from https://dergipark.org.tr/tr/download/article-file/2281060 CR - Peng, X., Zhong, R., Li, Z., & Li, Q. (2020). Optical remote sensing image change detection based on attention mechanism and image difference. IEEE Transactions on Geoscience and Remote Sensing, 59(9), 7296–7307. https://doi.org/10.1109/TGRS.2020.3033009 CR - Kaya, Y., Şenol, H. İ., Yiğit, A. Y., & Yakar, M. (2023). Car detection from very high-resolution UAV images using deep learning algorithms. Photogrammetric Engineering & Remote Sensing, 89(2), 117-123 CR - Li, K., Wan, G., Cheng, G., Meng, L., & Han, J. (2020). Object detection in optical remote sensing images: A survey and a new benchmark. ISPRS Journal of Photogrammetry and Remote Sensing, 159, 296–307. https://doi.org/10.1016/j.isprsjprs.2019.11.023 CR - Liu, Y., Li, H., Hu, C., Luo, S., Luo, Y., & Chen, C. W. (2024). Learning to aggregate multi-scale context for instance segmentation in remote sensing images. IEEE Transactions on Neural Networks and Learning Systems. https://doi.org/10.48550/arXiv.2111.11057 CR - Hoeser, T., Bachofer, F., & Kuenzer, C. (2020). Object detection and image segmentation with deep learning on Earth observation data: A review—Part II: Applications. Remote Sensing, 12(18), 3053. https://doi.org/10.3390/rs12183053 CR - Tong, K., Wu, Y., & Zhou, F. (2020). Recent advances in small object detection based on deep learning: A review. Image and Vision Computing, 97, 103910. https://doi.org/10.1016/j.imavis.2020.103910 CR - Wang, Y., Bashir, S. M. A., Khan, M., Ullah, Q., Wang, R., Song, Y., & Niu, Y. (2022). Remote sensing image super-resolution and object detection: Benchmark and state of the art. Expert Systems with Applications, 197, 116793. https://doi.org/10.1016/j.eswa.2022.116793 CR - Bakırman, T., & Sertel, E. (2023). A benchmark dataset for deep learning-based airplane detection: HRPlanes. International Journal of Engineering and Geosciences, 8(3), 212–223. Retrieved from https://dergipark.org.tr/tr/download/article-file/2392282 CR - Mahendrakar, T., Ekblad, A., Fischer, N., White, R., Wilde, M., & Kish, B. (2022, March). Performance study of YOLOv5 and Faster R-CNN for autonomous navigation around non-cooperative targets. IEEE Aerospace Conference. CR - Thapa, A., Horanont, T., Neupane, B., & Aryal, J. (2023). Deep learning for remote sensing image scene classification: A review and meta-analysis. Remote Sensing, 15(19), 4804. https://doi.org/10.3390/rs15194804 CR - Cheng, G., Xie, X., Han, J., Guo, L., & Xia, G. S. (2020). Remote sensing image scene classification meets deep learning: Challenges, methods, benchmarks, and opportunities. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 3735–3756. https://doi.org/10.1109/JSTARS.2020.3005403 CR - Polat, N., & Memduhoğlu, A. (2024). An unmanned aerial vehicle-based investigation of roof patch suitability for solar panel installation. International Journal of Engineering and Geosciences, 9(2), 281–291. https://dergipark.org.tr/tr/download/article-file/3678854 CR - Akar, Ö., Saralioğlu, E., Güngör, O., & Bayata, H. F. (2024). Semantic segmentation of very-high spatial resolution satellite images: A comparative analysis of 3D-CNN and traditional machine learning algorithms for automatic vineyard detection. International Journal of Engineering and Geosciences, 9(1), 12–24. Retrieved from https://dergipark.org.tr/en/pub/ijeg/issue/82506/1252298 CR - Qasem, R. (2023, May 14). Customize MMSegmentation models. Medium. https://medium.com/@rabee.qasem93/customize-mmsegmentation-models-870054ef803 CR - Li, B. (2022, July 19). Train semantic segmentation model with custom dataset using mmsegmentation. Medium. https://bo-li.medium.com/train-semantic-segmentation-model-with-custom-dataset-using-mmsegmentation-90d798d3f1bd CR - Zhang, C., Lam, K. M., & Wang, Q. (2023). Cof-net: A progressive coarse-to-fine framework for object detection in remote-sensing imagery. IEEE Transactions on Geoscience and Remote Sensing, 61, 1–17. https://doi.org/10.1109/TGRS.2022.3233881 CR - IEEE. (2021). MLCM: Multi-label confusion matrix. IEEE Journals & Magazine. https://ieeexplore.ieee.org/abstract/document/9711932 CR - Vujovic, Ž. (2021). Classification model evaluation metrics. International Journal of Advanced Computer Science and Applications, 12, 599–606. https://doi.org/10.14569/IJACSA.2021.0120670 CR - Unel, F. B., Kusak, L., & Yakar, M. (2023). GeoValueIndex map of public property assets generating via Analytic Hierarchy Process and Geographic Information System for Mass Appraisal: GeoValueIndex. Aestimum, 82, 51-69 . CR - Hashemi-Beni, L., & Gebrehiwot, A. (2020). Deep learning for remote sensing image classification for agriculture applications. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIV-M-2-2020, 51–54. https://doi.org/10.5194/isprs-archives-XLIV-M-2-2020-51-2020 CR - Kaur, H., & Sandhu, N. K. (2024). Evaluating the effectiveness of the proposed system using F1 score, recall, accuracy, precision, and loss metrics compared to prior techniques. International Journal of Communication Networks and Information Security, 15(4), 368–383. CR - Ernst, F.B., Köksal, B., (2024). Creating Climate Change Scenarios Using Geodesing Method: Pütürge District Example. Advanced Geomatics. 4(1); 01-08. CR - Tabakoğlu, C. (2024). A Review: Detection types and systems in remote sensing. Advanced GIS, 4(2), 100–105.Retrieved from https://publish.mersin.edu.tr/index.php/agis/article/view/1560 CR - Ayalke, G. Z., & Şişman, A. (2024). Google Earth Engine kullanılarak makine öğrenmesi tabanlı iyileştirilmiş arazi örtüsü sınıflandırması: Atakum, Samsun örneği. Geomatik, 9 (3), 375-390. DOI: 10.29128/geomatik.1472160 CR - Makhmudov, R., & Teymurov, M. (2024). Importance of using GIS software in the process of application of Analogue terrains and Counter-approach technologies in water resources assessment. Advanced Remote Sensing, 4(1), 36-45. CR - Demirel, Y., & Türk, N. (2024). Automatic detection of active fires and burnt areas in forest areas using optical satellite imagery and deep learning methods. Mersin Photogrammetry Journal, 6 (2), 66-78. https://doi.org/10.53093/mephoj.1575877 UR - https://doi.org/10.26833/ijeg.1587264 L1 - https://dergipark.org.tr/en/download/article-file/4375202 ER -