TY - JOUR T1 - A Novel Framework for Sustainable Hybrid Energy Distribution Network Using Distributed Decision Protocols TT - Dağıtık Karar Protokolleri Kullanarak Sürdürülebilir Hibrit Enerji Dağıtım Ağı için Yeni Bir Çerçeve AU - Çağlayan, Nihan AU - Yılmaz, İbrahim AU - Erdebilli, Babek PY - 2025 DA - July Y2 - 2025 DO - 10.29137/ijerad.1590147 JF - International Journal of Engineering Research and Development JO - IJERAD PB - Kirikkale University WT - DergiPark SN - 1308-5506 SP - 349 EP - 369 VL - 17 IS - 2 LA - en AB - Nowadays, population growth and technological advancements are contributing to the growth of global electricity demand. The aim of this research is to form a new distributed decision-making protocol (DDM) to increase the reliability and sustainability of HES. Using this DDM, it is intended to minimize the effects of planned and unplanned production interruptions on the independent and autonomous energy producers within the HES. By implementing this protocol, energy producers in the HES are intended to collaborate and achieve mutual benefits in cases where they are not able to fulfill the needs of their customers. As a case study, there are sixteen independent power plants that are simulated as CN enterprises in four independent communities. The DDM protocol aims to manage the collaboration among independent energy producers, to use the sources of the producers effectively, to increase the profit rates, and to optimize the sustainability of the energy supply for each community. The results demonstrates that the proposed protocol gives satisfying results under the criteria of profit, demand fulfillment rate, sustainability, and resource utilization both for each energy producers and entire HES. Moreover, the increase in collaboration rate within each community increased these parameters by average of 90%. KW - Distributed decision-making KW - Decentralized optimization KW - Systems analysis KW - Hybrid energy systems N2 - Günümüzde, nüfus artışı ve teknolojik ilerlemeler, küresel elektrik talebinin artmasına katkıda bulunmaktadır. Bu araştırmanın amacı, HES'in güvenilirliğini ve sürdürülebilirliğini artırmak için yeni bir dağıtılmış karar verme protokolü (DDM) geliştirmektir. Bu DDM kullanılarak, HES içindeki bağımsız ve otonom enerji üreticileri üzerindeki planlı ve plansız üretim kesintilerinin etkilerini en aza indirmek amaçlanmaktadır. Bu protokolün uygulanmasıyla, HES içindeki enerji üreticilerinin, müşteri ihtiyaçlarını karşılayamadıkları durumlarda işbirliği yaparak karşılıklı fayda sağlamaları hedeflenmektedir. Bir vaka çalışması olarak, dört bağımsız toplulukta CN işletmeleri olarak simüle edilen on altı bağımsız enerji santrali bulunmaktadır. DDM protokolü, bağımsız enerji üreticileri arasındaki işbirliğini yönetmeyi, üreticilerin kaynaklarını etkin bir şekilde kullanmayı, kar oranlarını artırmayı ve her topluluk için enerji arzının sürdürülebilirliğini optimize etmeyi amaçlamaktadır. Sonuçlar, önerilen protokolün, kar, talep karşılama oranı, sürdürülebilirlik ve kaynak kullanımı kriterleri altında her bir enerji üreticisi ve tüm HES için tatmin edici sonuçlar verdiğini göstermektedir. Ayrıca, her topluluk içindeki işbirliği oranındaki artış, bu parametreleri ortalama %90 oranında artırmıştır. CR - Ahmad, T., Zhang, D., & Huang, C. (2021). Methodological framework for short-and medium-term energy, solar and wind power forecasting with stochastic-based machine learning approach to monetary and energy policy applications. Energy, 231, 120911. https://doi.org/10.1016/j.energy.2021.120911 CR - Ajidarma, P., Nof, S. Y., Pradana, R. A., Nugroho, W. A., & Halim, A. H. (2022). Preemptive Demand and Capacity Sharing Learning Protocols Using Long Short-Term Memory (LSTM) Neural Network Autoencoders. IFAC-PapersOnLine, 55(10), 1798–1803. https://doi.org/10.1016/j.ifacol.2022.09.659 CR - Al-Abri, A., & Okedu, K. E. (2023). Overview of the Global Electricity System in Oman Considering Energy Demand Model Forecast. Energy Engineering: Journal of the Association of Energy Engineering, 120(2), 409–423. https://doi.org/10.32604/ee.2023.020375 CR - Al-khaykan, A., Al-kharsan, I. H., Ali, M. O., Alrubaie, A. J., Fakhruldeen, H. F., & Counsell, J. M. (2023). Impact of Multi-Year Analysis on the Optimal Sizing and Control Strategy of Hybrid Energy Systems. 1–17. CR - Bhargava, R., Levalle, R. R., & Nof, S. Y. (2016). A best-matching protocol for order fulfillment in re-configurable supply networks. Computers in Industry, 82, 160–169. https://doi.org/10.1016/j.compind.2016.07.001 CR - Chen, Y., Guo, M., Liu, Y., Wang, D., Zhuang, Z., & Quan, M. (2023). Energy, exergy, and economic analysis of a centralized solar and biogas hybrid heating system for rural areas. Energy Conversion and Management, 276(13), 116591. https://doi.org/10.1016/j.enconman.2022.116591 CR - Cho, H., Goude, Y., Brossat, X., & Yao, Q. (2013). Modeling and forecasting daily electricity load curves: A hybrid approach. Journal of the American Statistical Association, 108(501), 7–21. https://doi.org/10.1080/01621459.2012.722900 CR - Costoya, X., deCastro, M., Carvalho, D., & Gómez-Gesteira, M. (2023). Assessing the complementarity of future hybrid wind and solar photovoltaic energy resources for North America. Renewable and Sustainable Energy Reviews, 173(November 2022). https://doi.org/10.1016/j.rser.2022.113101 CR - Ghofrani, M., & Hosseini, N. N. (2016). Optimizing Hybrid Renewable Energy Systems: A Review. Sustainable Energy - Technological Issues, Applications and Case Studies. https://doi.org/10.5772/65971 CR - Global Futures Report - REN21. (n.d.). Retrieved May 23, 2022, from https://web.archive.org/web/20190724164150/https://www.ren21.net/reports/global-futures-report/ CR - Huang, C. Y., & Wu, Y. W. (2003). Decision model for partnership development in virtual enterprises. International Journal of Production Research, 41(9), 1855–1872. https://doi.org/10.1080/0020754031000087210 CR - Huang, K., Liu, P., Kim, J. S., Xu, W., Gong, Y., Cheng, Q., & Zhou, Y. (2023). A model coupling current non-adjustable, coming adjustable and remaining stages for daily generation scheduling of a wind-solar-hydro complementary system. Energy, 263(PB), 125737. https://doi.org/10.1016/j.energy.2022.125737 CR - Huy, T. H. B., Dinh, H. T., & Kim, D. (2023). Multi-objective framework for a home energy management system with the integration of solar energy and an electric vehicle using an augmented ε-constraint method and lexicographic optimization. Sustainable Cities and Society, 88(November 2022), 104289. https://doi.org/10.1016/j.scs.2022.104289 CR - Ifaei, P., Karbassi, A., Jacome, G., & Yoo, C. K. (2017). A systematic approach of bottom-up assessment methodology for an optimal design of hybrid solar/wind energy resources – Case study at middle east region. Energy Conversion and Management, 145(2017), 138–157. https://doi.org/10.1016/j.enconman.2017.04.097 CR - IRENA. (2019). Renewable capacity statistics 2019, International Renewable Energy Agency (IRENA), Abu Dhabi. In International Renewable Energy Agency (IRENA), Abu Dhabi. CR - Jahanpour, E., Ko, H. S., & Nof, S. Y. (2016). Collaboration protocols for sustainable wind energy distribution networks. International Journal of Production Economics, 182(July 2015), 496–507. https://doi.org/10.1016/j.ijpe.2016.09.010 CR - Kannan, N., & Vakeesan, D. (2016). Solar energy for future world: - A review. Renewable and Sustainable Energy Reviews, 62, 1092–1105. https://doi.org/10.1016/j.rser.2016.05.022 CR - Kazem, H. A., Chaichan, M. T., Al-Waeli, A. H. A., & Gholami, A. (2022). A systematic review of solar photovoltaic energy systems design modelling, algorithms, and software. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 44(3), 6709–6736. https://doi.org/10.1080/15567036.2022.2100517 CR - Kucukali, S., & Baris, K. (2010). Turkey’s short-term gross annual electricity demand forecast by fuzzy logic approach. Energy Policy, 38(5), 2438–2445. https://doi.org/10.1016/j.enpol.2009.12.037 CR - Kumar, C. M. S., Singh, S., Gupta, M. K., Nimdeo, Y. M., Raushan, R., Deorankar, A. V., Kumar, T. M. A., Rout, P. K., Chanotiya, C. S., Pakhale, V. D., & Nannaware, A. D. (2023). Solar energy: A promising renewable source for meeting energy demand in Indian agriculture applications. Sustainable Energy Technologies and Assessments, 55(November 2022), 102905. https://doi.org/10.1016/j.seta.2022.102905 CR - Lewis, N. S. (2007). Toward cost-effective solar energy use. Science, 315(5813), 798–801. https://doi.org/10.1126/science.1137014 CR - Li, J. (2023). Evaluation of dynamic growth trend of renewable energy based on mathematical model. Energy Reports, 9, 48–56. https://doi.org/10.1016/j.egyr.2022.11.139 CR - Li, X., Yang, W., Zhao, Z., Wang, R., & Yin, X. (2023). Advantage of priority regulation of pumped storage for carbon-emission-oriented co-scheduling of hybrid energy system. Journal of Energy Storage, 58(December 2022), 106400. https://doi.org/10.1016/j.est.2022.106400 CR - Lu, L., Yuan, W., Su, C., Wang, P., Cheng, C., Yan, D., & Wu, Z. (2021). Optimization model for the short-term joint operation of a grid-connected wind-photovoltaic-hydro hybrid energy system with cascade hydropower plants. Energy Conversion and Management, 236. https://doi.org/10.1016/j.enconman.2021.114055 CR - Magesh, S. (2025). Distributed energy storage systems: Hybrid energy storage systems. Distributed Energy Storage Systems for Digital Power Systems, 109–147. https://doi.org/10.1016/B978-0-443-22013-5.00011-3 CR - Maghami, M. R., & Mutambara, A. G. O. (2023). Challenges associated with Hybrid Energy Systems: An artificial intelligence solution. Energy Reports, 9, 924–940. https://doi.org/10.1016/j.egyr.2022.11.195 CR - Mahesh, A., & Sandhu, K. S. (2015). Hybrid wind/photovoltaic energy system developments: Critical review and findings. Renewable and Sustainable Energy Reviews, 52, 1135–1147. https://doi.org/10.1016/j.rser.2015.08.008 CR - Memon, M. M., Halepoto, I. A., Abro, M. A. J., & Khuhawar, F. Y. (2025). Distributed energy storage systems for distributed energy resources integration. Distributed Energy Storage Systems for Digital Power Systems, 319–358. https://doi.org/10.1016/B978-0-443-22013-5.00015-0 CR - Mertens, S. (2022). Design of wind and solar energy supply, to match energy demand. Cleaner Engineering and Technology, 6, 100402. https://doi.org/10.1016/j.clet.2022.100402 CR - Minowa, M., Ito, K., Sumi, S. I., & Horii, K. (2012). A Study of Lightning Protection for Wind Turbine Blade by Using Creeping Discharge Characteristics Masayuki. 2012 International Conference on Lightning Protection (ICLP), Vienna, Austria, 12–15. CR - Mohammed, N., & Al-Bazi, A. (2021). A multi agent-based optimisation model for the distribution planning and control of energy-based intermittent renewable sources. International Journal of Energy Research, 45(13), 19316–19330. https://doi.org/10.1002/er.7044 CR - Padmashini, R. K., Lakshmi, D., Rajeshkumar, J. N., Sivaraman, P., Rajasree, R., & Chenniappan, S. (2025). Energy management for distributed energy storage system. Distributed Energy Storage Systems for Digital Power Systems, 183–199. https://doi.org/10.1016/B978-0-443-22013-5.00003-4 CR - Rakpho, P., & Yamaka, W. (2021). The forecasting power of economic policy uncertainty for energy demand and supply. Energy Reports, 7, 338–343. https://doi.org/10.1016/j.egyr.2021.06.059 CR - Reddy, S. S. (2017). Optimization of Renewable Energy Resources in Hybrid Energy Systems. Journal of Green Engineering, 7(1), 43–60. https://doi.org/10.13052/JGE1904-4720.7123 CR - Sahri, Y., Tamalouzt, S., Belaid, S. L., Bajaj, M., Ghoneim, S. S. M., Zawbaa, H. M., & Kamel, S. (2023). Performance improvement of Hybrid System based DFIG-Wind/PV/Batteries connected to DC and AC grid by applying Intelligent Control. Energy Reports, 9, 2027–2043. https://doi.org/10.1016/j.egyr.2023.01.021 CR - Shivam, K., Tzou, J. C., & Wu, S. C. (2020). Multi-objective sizing optimization of a grid-connected solar-wind hybrid system using climate classification: A case study of four locations in Southern Taiwan. Energies, 13(10). https://doi.org/10.3390/en13102505 CR - Smith, R. G. (1980). The Contract Net Protocol: High-Level Communication and Control in a Distributed Problem Solver. IEEE Transactions on Computers, C–29(12), 1104–1113. https://doi.org/10.1109/TC.1980.1675516 CR - Sreenath, S., Azmi, A. M., & Ismail, Z. A. M. (2023). Feasibility of solar hybrid energy system at a conservation park: Technical, economic, environmental analysis. Energy Reports, 9, 711–719. https://doi.org/10.1016/j.egyr.2022.11.065 CR - Suganthi, L., & Samuel, A. A. (2012). Energy models for demand forecasting - A review. Renewable and Sustainable Energy Reviews, 16(2), 1223–1240. https://doi.org/10.1016/j.rser.2011.08.014 CR - Syama, S., & Ramprabhakar, J. (2022). Multistep Ahead Solar Irradiance and Wind Speed Forecasting using Bayesian Optimized Long Short Term Memory. 7th International Conference on Communication and Electronics Systems, ICCES 2022 - Proceedings, Icces, 164–171. https://doi.org/10.1109/ICCES54183.2022.9835840 CR - Taghizadeh, M., Bahramara, S., Adabi, F., & Nojavan, S. (2020). Optimal operation of storage-based hybrid energy system considering market price uncertainty and peak demand management. Journal of Energy Storage, 30(April), 101519. https://doi.org/10.1016/j.est.2020.101519 CR - Tavner, P. J., Greenwood, D. M., Whittle, M. W. G., Gindele, R., Faulstich, S., & Hahn, B. (2010). Study of weather and location effects on wind turbine failure rates. Wind Energy, 16(2), 175–187. https://doi.org/10.1002/we.538 CR - Wei, H., Hongxuan, Z., Yu, D., Yiting, W., Ling, D., & Ming, X. (2019). Short-term optimal operation of hydro-wind-solar hybrid system with improved generative adversarial networks. Applied Energy, 250(April), 389–403. https://doi.org/10.1016/j.apenergy.2019.04.090 CR - Wei, Y., Liu, H., Gu, K., & Li, D. (2007). Contract net based scheduling approach using interactive bidding for dynamic job shop scheduling. IEEE ICIT 2007 - 2007 IEEE International Conference on Integration Technology, 281–286. https://doi.org/10.1109/ICITECHNOLOGY.2007.4290478 CR - Wu, J., Levi, N., Araujo, R., & Wang, Y. G. (2023). An evaluation of the impact of COVID-19 lockdowns on electricity demand. Electric Power Systems Research, 216(November 2022), 109015. https://doi.org/10.1016/j.epsr.2022.109015 CR - Yilmaz, I., & Yoon, S. W. (2020). Dynamic-distributed decisions and sharing protocol for fair resource sharing in collaborative network. International Journal of Production Economics, 226(January). https://doi.org/10.1016/j.ijpe.2020.107644 CR - Yoon, S. W., & Nof, S. Y. (2010a). Demand and capacity sharing decisions and protocols in a collaborative network of enterprises. Decision Support Systems, 49(4), 442–450. https://doi.org/10.1016/j.dss.2010.05.005 CR - Yoon, S. W., & Nof, S. Y. (2010b). Demand and capacity sharing decisions and protocols in a collaborative network of enterprises. Decision Support Systems, 49(4), 442–450. https://doi.org/10.1016/j.dss.2010.05.005 CR - Yuan, W., Wang, X., Su, C., Cheng, C., Liu, Z., & Wu, Z. (2021). Stochastic optimization model for the short-term joint operation of photovoltaic power and hydropower plants based on chance-constrained programming. Energy, 222, 119996. https://doi.org/10.1016/j.energy.2021.119996 CR - Yuan, X., Heikari, L., Hirvonen, J., Liang, Y., Virtanen, M., Kosonen, R., & Pan, Y. (2022). System modelling and optimization of a low temperature local hybrid energy system based on solar energy for a residential district. Energy Conversion and Management, 267(March), 115918. https://doi.org/10.1016/j.enconman.2022.115918 CR - Zhang, H., Liao, K., Yang, J., Yin, Z., & He, Z. (2025). Long-term and Short-term Coordinated Scheduling for Wind-PV-Hydro-Storage Hybrid Energy System based on Deep Reinforcement Learning. IEEE Transactions on Sustainable Energy. https://doi.org/10.1109/TSTE.2025.3529215 CR - Zhang, Y., Han, Z., Tian, B., Chen, N., & Fan, Y. (2025). Coordinated Control Strategy of New Energy Power Generation System with Hybrid Energy Storage Unit. Energy Engineering: Journal of the Association of Energy Engineering, 122(1), 167. https://doi.org/10.32604/EE.2024.056190 CR - Zhang, Z., Qin, H., Li, J., Liu, Y., Yao, L., Wang, Y., Wang, C., Pei, S., & Zhou, J. (2020). Short-term optimal operation of wind-solar-hydro hybrid system considering uncertainties. Energy Conversion and Management, 205(October 2019), 112405. https://doi.org/10.1016/j.enconman.2019.112405 CR - Zhou, X., Dai, C., Liu, G., Tan, X., Zhang, Z., Pan, Y., Pan, H., & Ahmed, A. (2023). A hybrid wind energy harvester based on a double-rotor reverse synergy mechanism for high-speed railway. Sustainable Cities and Society, 90(August 2022), 104389. https://doi.org/10.1016/j.scs.2022.104389 CR - Zhu, F., Zhong, P. an, Xu, B., Liu, W., Wang, W., Sun, Y., Chen, J., & Li, J. (2020). Short-term stochastic optimization of a hydro-wind-photovoltaic hybrid system under multiple uncertainties. Energy Conversion and Management, 214(1), 112902. https://doi.org/10.1016/j.enconman.2020.112902 UR - https://doi.org/10.29137/ijerad.1590147 L1 - https://dergipark.org.tr/en/download/article-file/4388448 ER -