TY - JOUR T1 - Trimetil borat/metanol azeotropunun pervaporasyonla ayrılmasında selüloz asetat (SA)/ polivinilpirolidon (PVP) membranların performans değerlendirmesi TT - Performance evaluation of cellulose acetate (CA)/polyvinylpyrrolidone (PVP) membranes in the pervaporation separation of trimethyl borate/methanol azeotrope AU - Özekmekci, Mehtap AU - Çopur, Mehmet PY - 2025 DA - June Y2 - 2025 DO - 10.30728/boron.1590877 JF - Journal of Boron PB - TENMAK Bor Araştırma Enstitüsü WT - DergiPark SN - 2149-9020 SP - 49 EP - 60 VL - 10 IS - 2 LA - tr AB - Bu çalışmada trimetil borat (TMB)/metanol azeotropunu ayırmak için selüloz asetat (SA)/ polivinilpirolidon (PVP) blend membranların performansı incelenmiştir. Membranlar, Fourier dönüşümlü kızıl ötesi spektroskopisi (FTIR), taramalı elektron mikroskopisi (SEM), X-Ray difraktometresi (XRD), termogravimetrik analiz (TGA) ve temas açısı ölçümleri ile karakterize edilmiştir. PVP oranındaki artma ile SA’nın karakteristik XRD pik şiddeti ve temas açısı küçülmüştür. Pervaporasyon prosesinde PVP oranının, besleme sıcaklığının ve beslemedeki metanol konsantrasyonunun etkisi incelenmiştir. Artan PVP oranıyla akının arttığı, seçiciliğin azaldığı gözlemlenmiştir. Besleme sıcaklığının akı üzerinde olumlu bir etkiye sahip olduğu tespit edilmiştir. Besleme konsantrasyonundaki metanol miktarının artması, polimer zincirlerinin daha esnek hale gelmesine neden olarak hem metanolün hem de TMB’nin difüzyonunu kolaylaştırmıştır. Ayrıca membranın tekrar kullanılabilirliği test edilmiş olup fiziksel ve kimyasal bütünlüğünü koruduğu yapılan FTIR ve SEM analizleriyle doğrulanmıştır. SA-PVP-3 membranı için en uygun çalışma koşulları, 35°C sıcaklık ve ağırlıkça %25 metanol içeren azeotrop olarak tespit edilmiştir. Bu çalışma koşulları altında akı ve seçicilik sırasıyla 302,08 g/(m2sa) ve 46,92 olarak belirlenmiştir. KW - Azeotrop KW - Metanol KW - Pervaporasyon KW - Trimetil borat N2 - In this study, the performance of cellulose acetate (SA)/polyvinylpyrrolidone (PVP) blend membranes for the separation of trimethyl borate (TMB)/methanol azeotrope was investigated. The membranes were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-Ray diffractometer (XRD), thermogravimetric analysis (TGA) and contact angle measurements. The characteristic XRD peak intensity and contact angle of SA decreased with increasing PVP ratio. The effect of PVP ratio, feed temperature and methanol concentration in the feed were investigated in the pervaporation process. It was observed that flux increased and selectivity decreased with increasing PVP ratio. Feed temperature was found to have a positive effect on flux. The increase in the amount of methanol in the feed concentration caused the polymer chains to become more flexible, facilitating the diffusion of both methanol and TMB. Additionally, the reusability of the membrane was tested, and its physical and chemical structure integrity was confirmed by FTIR and SEM analyses. The optimum operating conditions for the SAPVP- 3 membrane were found to be 35°C temperature and azeotrope containing 25 wt% methanol. Under these operating conditions, the flux and selectivity were determined as 302.08 g/(m2h) and 46.92, respectively. CR - [1] Gültekin, E., Calam, A., & Şahin, M. (2023). Experimental investigation of trimethyl borate as a fuel additive for a SI engine. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 45(1), 419-433. https://doi.org/10.1080/15567036.2023.2171516 CR - [2] Pişkin, M. B., & Yılmaz, M. S. (2012). Application of FTIR spectroscopy coupled with attenuated total reflectance for the determination of trimethyl borate. International Journal of Biological, Ecological and Environmental Sciences (IJBEES), 1(6), 188-191. CR - [3] Bao, Z., Zhang, W., Cui, X., & Xu, J. (2014). Design, optimization and control of extractive distillation for the separation of trimethyl borate-methanol. Industrial and Engineering Chemistry Research, 53(38), 14802-14814. https://doi.org/10.1021/ie502022m CR - [4] Obut, A., & Girgin, I. (2003). Trimetil borat [B(OCH3)3] üretim yöntemleri. Bilimsel Madencilik Dergisi, 42(4), 37-42. https://dergipark.org.tr/tr/download/ article-file/375576 CR - [5] Yontar, A. A., Değirmenci, H., & Kuçukosman, R. (2024). Enhancing droplet combustion dynamics in trimethyl borate-based blends: Exploring energetic phenomena. Combustion Science and Technology, 1-23. https://doi. org/10.1080/00102202.2024.2368759 CR - [6] Bush, J. D. (1959). Azeotropic extractive distillation of trimethyl borate (Washington, DC, US Patent No.2,880,144) U.S. Patent and Trademark Office. https://patents.google.com/patent/US2880144A/en?oq=2880144 CR - [7] Ozekmekci, M., & Copur, M. (2020). Synthesis of CaCO3 and trimethyl borate by reaction of ulexite and methanol in the presence of CO2. Journal of CO2 Utilization, 42, 101321. https://doi.org/10.1016/j.jcou.2020.101321 CR - [8] Tyson, J. G. N. (1959). Preparation of borate esters (Washington, DC, U.S. Patent No. 2,884,440). U.S. Patent and Trademark Office. https://patents.google.com/patent/US2884440A/en CR - [9] Chiras, S. J. (1953). Process of preparing trimethyl borate (Washington, DC, U.S. Patent No. 2,947,776). U.S. Patent and Trademark Office. https://patents. google.com/patent/US2947776A/en CR - [10] Schlesinger, H. I., Brown, H. C., Mayfield, D. L., & Gilbreath, J. R. (1953). Procedures for the preparation of methyl borate. Journal of the American Chemical Society, 75(1), 213-215. https://doi.org/10.1021/ ja01097a056 CR - [11] Cakanyildirim, C., & Guru, M. (2015). Alternative energy storage key component trimethyl borate: synthesis, dehydration and kinetic parameters. Journal of Thermal Science and Technology, 35(1), 53-57. https://dergipark. org.tr/en/download/article-file/400577 CR - [12] Hefferan, G., Hough, W., & Guibert, C. (1974). Preparation of orthoborates of monohydric alcohols and phenols (Washington, DC, U.S. Patent No. 3,853,941). U.S. Patent and Trademark Office. https://patents.google.com/patent/US3853941A/en?oq=U.S.+Patent+No.+3%2c853%2c941 CR - [13] Binning, R. C., & Jennings, J. F. (1966). Recovery of alkyl borate from methanol-alkyl borate mixtures (Washington, DC, U.S. Patent No. 3,230,245). U.S. Patent and Trademark Office. https://patents.google.com/patent/US3230245A/en?oq=U.S.+Patent+No.+3%2c230%2c245 CR - [14] Maus, E., & Brüschke, H. E. A. (2002). Separation of methanol from methylesters by vapour permeation: Experiences of industrial applications. Desalination, 148(1-3), 315-319. https://doi.org/10.1016/ S0011-9164(02)00723-3 CR - [15] Gaálová, J., Vojtek, L., Lasnier, S., Tadic, T., Sýkora, J., & Izák, P. (2019). Separation of trimethyl borate from a liquid mixture by pervaporation. Chemical Engineering and Technology, 42(4), 769-773. https://doi.org/10.1002/ceat.201800585 CR - [16] Basile, A., & Ghasemzadeh, K. (Eds.). (2019). Current trends and future developments on (bio-) membranes: Microporous membraned and membrane reactors. Elsevier https://doi.org/10.1016/C2015-0-06163-9 CR - [17] Wang, Q., Zhou, C., Shen, L., Song, E., Yang, Y., Lian, H., … & Pan, Y. (2024). Co-gallate MOF membrane for efficient pervaporation separation of MeOH from MTBE. Journal of Membrane Science, 698, 122621. https://doi.org/10.1016/j.memsci.2024.122621 CR - [18] Eldemerdash, U., Dandash, A., Nosier, S., Abdallah, H., & Hawash, S. A. (2024). Investigation of different polymeric membranes for removal of phenol from aqueous environment using pervaporation technique. Applied Water Science, 14(70), 1-12. https://doi.org/10.1007/s13201-024-02136-z CR - [19] Miao, X., Lin, J., & Bian, F. (2020). Utilization of discarded crop straw to produce cellulose nanofibrils and their assemblies. Journal of Bioresources and Bioproducts, 5(1), 26-36. https://doi.org/10.1016/j.jobab.2020.03.003 CR - [20] Abdellatif, F. H. H., Babin, J., Arnal-Herault, C., David, L., & Jonquieres, A. (2016). Grafting of cellulose acetate with ionic liquids for biofuel purification by a membrane process: Influence of the cation. Carbohydrate Polymers, 147, 313-322. https://doi.org/10.1016/j.carbpol.2016.04.008 CR - [21] Wei, D. W., Wei, H., Gauthier, A. C., Song, J., Jin, Y., & Xiao, H. (2020). Superhydrophobic modification of cellulose and cotton textiles: Methodologies and applications. Journal of Bioresources and Bioproducts, 5(1), 1-15. https://doi.org/10.1016/j.jobab.2020.03.001 CR - [22] Bouftou, A., Aghmih, K., Lakhdar, F., Abidi, N., Gmouh, S., & Majid, S. (2024). Enhancing cellulose acetate film with green plasticizers for improved performance, biodegradability, and migration study into a food simulant. Measurement: Food, 15, 100180. https://doi.org/10.1016/j.meafoo.2024.100180 CR - [23] Amin, P. D., Bhanushali, V., & Joshi, S. (2018). Role of polyvinlyppyrrolidone in membrane technologies. International Journal of ChemTech Research, 11(9), 247-259. https://doi.org/10.20902/ijctr.2018.110932 CR - [24] Wu, H., Fang, X., Zhang, X., Jiang, Z., Li, B., & Ma, X. (2008). Cellulose acetate-poly(N-vinyl-2-pyrrolidone) blend membrane for pervaporation separation of methanol/MTBE mixtures. Separation and Purification Technology, 64(2), 183-191. https://doi.org/10.1016/j.seppur.2008.09.013 CR - [25] Demirdere, M. E., Akal, M., & Unlu, D. (2021). İlaç endüstrisi atık sularından izopropanolün pervaporatif geri kazanımı. Bayburt Üniversitesi Fen Bilimleri Dergisi, 4(2), 122-129. https://dergipark.org.tr/tr/download/article-file/2009279 CR - [26] Jauhari, J., Wiranata, S., Rahma, A., Nawawi, Z., & Sriyanti, I. (2019). Polyvinylpyrrolidone/cellulose acetate nanofibers synthesized using electrospinning method and their characteristics. Materials Research Express, 6(6). https://doi.org/10.1088/2053-1591/ab0b11 CR - [27] Hou, J., Wang, Y., Xue, H., & Dou, Y. (2018). Biomimetic growth of hydroxyapatite on electrospun CA/PVP core-shell nanofiber membranes. Polymers, 10(9), 1032. https://doi.org/10.3390/polym10091032 CR - [28] Molavi, M., & Hojjati, M. R. (2024). Separating neroli from water using the PDMS-ZSM5 mixed matrix membrane and the pervaporation method. ChemistrySelect, 9(40), 1-15. https://doi.org/10.1002/slct.202300982 CR - [29] Xia, R., Yang, Z., Sun, D., Wang, Z., Yao, M., Liu, H., … & Pan, X. (2025). Novel pervaporation separation of PVA/CS blend membranes for the removal of DMF from industrial wastewater. Journal of Applied Polymer Science, 142(2), 1-12. https://doi.org/10.1002/app.56356 CR - [30] Nyamweya, N. N. (2021). Applications of polymer blends in drug delivery. Future Journal of Pharmaceutical Sciences, 7, 1-15. https://doi.org/10.1186/s43094-020-00167-2 CR - [31] Ulu, A., Noma, S. A. A., Gurses, C., Koytepe, S., & Ates, B. (2018). Chitosan/Polyvinylpyrrolidone/MCM- 41 composite hydrogel films: Structural, thermal, surface, and antibacterial properties. Starch, 70(11-12), 1700303. https://doi.org/10.1002/star.201700303 CR - [32] Unlu, D. (2023). High-efficiency pervaporative separation of fuel bioadditive methylal from methanol by poly(vinyl alcohol)/poly(vinylpyrrolidone) blend membrane. Brazilian Journal of Chemical Engineering, 40(1), 257- 268. https://doi.org/10.1007/s43153-022-00231-9 CR - [33] Kusworo, T. D., Widayat, N., Budiyono, N., Siahaan, A. A., Iskandar, G. K., & Utomo, D. P. (2019). Development of cellulose acetate - PVP blend membrane and UV irradiation treatment to increase membrane selectivity for clove oil purification. Journal of Physics: Conference Series, 1295(1), 12022. https://doi.org/10.1088/1742-6596/1295/1/012022 CR - [34] Ashraf, M. A., Islam, A., Dilshad, M. R., Butt, M. A., Jamshaid, F., Ahmad, A., & Khan, R. U. (2021). Synthesis and characterization of functionalized single walled carbon nanotubes infused cellulose acetate/ poly(vinylpyrrolidone) dialysis membranes for ion separation application. Journal of Environmental Chemical Engineering, 9(4), 105506. https://doi. org/10.1016/j.jece.2021.105506 CR - [35] Kalantari, A., Jonoobi, M., Ashori, A., & Moradpour, P. (2024). Sustainable upcycling of waste banknotes into high-performance cellulose acetate: Properties, characterization and environmental implications. Journal of Polymers and the Environment, 33, 400-414. https:// doi.org/10.1007/s10924-024-03434-y CR - [36] Alrobea, H., Khan, A., Alamry, K. A., & Hussein, M. A. (2024). Antibacterial evaluation of polyvinyl alcohol/ polyvinyl pyrrolidone/chitosan nanocomposite embedded curcumin@zinc oxide. Results in Chemistry, 10, 101729. https://doi.org/10.1016/j.rechem.2024.101729 CR - [37] Zhu, T., Li, Z., Luo, Y., & Yu, P. (2013). Pervaporation separation of dimethyl carbonate/methanol azeotrope through cross-linked PVA-poly(vinyl pyrrolidone)/ PAN composite membranes. Desalination and Water Treatment, 51(28-30), 5485-5493. https://doi.org/10.10 80/19443994.2012.760490 CR - [38] Sharma, R. R., & Chellam, S. (2006). Temperature and concentration effects on electrolyte transport across porous thin-film composite nanofiltration membranes: Pore transport mechanisms and energetics of permeation. Journal of Colloid and Interface Science, 298(1), 327-340. https://doi.org/10.1016/j.jcis.2005.12.033 CR - [39] Suleman, M. S., Lau, K. K., & Yeong, Y. F. (2016). Plasticization and swelling in polymeric membranes in CO2 removal from natural gas. Chemical Engineering & Technology, 39(9), 1604-1616. https://doi.org/10.1002/ceat.201500495 CR - [40] Farid, O. M. (2011). Investigating membrane selectivity based on polymer swelling [Doctoral dissertation]. University of Nottingham. https://eprints.nottingham. ac.uk/11774/1/My_PhD_final_thesis_University_of_ Nottingham_.pdf CR - [41] Chapman, P. D., Oliveira, T., Livingston, A. G., & Li, K. (2008). Membranes for the dehydration of solvents by pervaporation. Journal of Membrane Science, 318(1-2), 5-37. https://doi.org/10.1016/j.memsci.2008.02.061 CR - [42] Unlu, D. (2020). Selüloz Asetat/ polivinilpirolidon blend membran ile biyoetanolün pervaporatif dehidrasyonu. Academic Perspective Procedia, 3(1), 354-361. https:// doi.org/10.33793/acperpro.03.01.68 CR - [43] Zhou, K., Zhang, Q. G., Han, G. L., Zhu, A. M., & Liu, Q. L. (2013). Pervaporation of water-ethanol and methanol- MTBE mixtures using poly (vinyl alcohol)/cellulose acetate blended membranes. Journal of Membrane Science, 448, 93-101. https://doi.org/10.1016/j.memsci.2013.08.005 CR - [44] Moulik, S., Bukke, V., Sajja, S. C., & Sridhar, S. (2018). Chitosan-polytetrafluoroethylene composite membranes for separation of methanol and toluene by pervaporation. Carbohydrate Polymers, 193, 28-38. https://doi.org/10.1016/j.carbpol.2018.03.069 CR - [45] Unlu, D. (2020). Synthesis of inorganic doped polyvinyl alcohol/hydroxypropyl methyl cellulose mixed matrix membrane for pervaporative separation of dimethyl carbonate/methanol mixtures. Korean Journal of Chemical Engineering, 37(4), 698-706. https://doi.org/10.1007/s11814-020-0503-8 CR - [46] Zhang, X. H., Liu, Q. L., Xiong, Y., Zhu, A. M., Chen, Y., & Zhang, Q. G. (2009). Pervaporation dehydration of ethyl acetate/ethanol/water azeotrope using chitosan/ poly (vinyl pyrrolidone) blend membranes. Journal of Membrane Science, 327(1-2), 274-280. https://doi.org/10.1016/j.memsci.2008.11.034 CR - [47] Abdali, A., Eskandarabadi, S. M., Mahmoudian, M., & Hakimi Kuranabadi, S. (2024). Inorganic nanofillers in mix matrix membranes for pervaporation process: A review. Polymer, 312, 127575. https://doi.org/10.1016/j.polymer.2024.127575 CR - [48] Sun, X., Li, N., Wang, Z., Shen, W., Xie, Z., Liu, Y., & Jin, L. (2024). Tailoring physicochemical properties of quaternized polystyrene-ethylene/butylene-styrene membrane for enhanced pervaporation desalination. Desalination, 587, 117966. https://doi.org/10.1016/j.desal.2024.117966 CR - [49] Liu, L., & Kentish, S. E. (2018). Pervaporation performance of crosslinked PVA membranes in the vicinity of the glass transition temperature. Journal of Membrane Science, 553, 63-69. https://doi.org/10.1016/j.memsci.2018.02.021 CR - [50] Ma, X., Hu, C., Guo, R., Fang, X., Wu, H., & Jiang, Z. (2008). HZSM5-filled cellulose acetate membranes for pervaporation separation of methanol/MTBE mixtures. Separation and Purification Technology, 59(1), 34-42. https://doi.org/10.1016/j.seppur.2007.05.023 CR - [51] Prihatiningtyas, I., Gebreslase, G. A., & Van der Bruggen, B. (2020). Incorporation of Al2O3 into cellulose triacetate membranes to enhance the performance of pervaporation for desalination of hypersaline solutions. Desalination, 474, 114198. https://doi.org/10.1016/j.desal.2019.114198 CR - [52] Kappert, E. J., Raaijmakers, M. J. T., Tempelman, K., Cuperus, F. P., Ogieglo, W., & Benes, N. E. (2019). Swelling of 9 polymers commonly employed for solvent-resistant nanofiltration membranes: A comprehensive dataset. Journal of Membrane Science, 569, 177-199. https://doi.org/10.1016/j.memsci.2018.09.059 CR - [53] Casimiro, M. H., Gomes, S. R., Rodrigues, G., Leal, J. P., & Ferreira, L. M. (2018). Chitosan/poly(vinylpyrrolidone) matrices obtained by gamma-irradiation for skin scaffolds: Characterization and preliminary cell response studies. Materials, 11(12), 2535. https://doi.org/10.3390/ma11122535 CR - [54] Zhang, Q. G., Hu, W. W., Zhu, A. M., & Liu, Q. L. (2013). UV-crosslinked chitosan/polyvinylpyrrolidone blended membranes for pervaporation. RSC Advances, 3(6), 1855-1861. https://doi.org/10.1039/c2ra21827e CR - [55] Kalyani, S., Smitha, B., Sridhar, S., & Krishnaiah, A. (2006). Separation of ethanol-water mixtures by pervaporation using sodium alginate/poly(vinyl pyrrolidone) blend membrane crosslinked with phosphoric acid. Industrial and Engineering Chemistry Research, 45(26), 9088-9095. https://doi.org/10.1021/ ie060085y UR - https://doi.org/10.30728/boron.1590877 L1 - https://dergipark.org.tr/en/download/article-file/4391810 ER -