@article{article_1593971, title={Güneş Aktivitesi Tahmini Üzerine Makine Öğrenmesi Uygulamaları}, journal={Turkish Journal of Astronomy and Astrophysics}, volume={6}, pages={407–410}, year={2025}, DOI={10.55064/tjaa.1593971}, author={Kalkan, Mirkan Yusuf and Gadelmavla, Diaa and Yavuz, Metin}, keywords={solar cycle, time series prediction, machine learning}, abstract={Son zamanlarda makine öğrenmesi (ML) birçok alanda uygulanmaya başlanmıştır. Bu yöntemle, problemlere karşı daha hızlı ve daha kapsamlı çözümler üretilmesi amaçlanmıştır. Güneş Aktivitesinin (GA) 1700 yılından beri çevrimsel değişiminin takibiyle, farklı tahmin senaryoları oluşturabilmek için çeşitli ML algoritmaları kullanılmaktadır. Bu çalışmada, çeşitli ML algoritmalarıyla 25. Güneş Çevrimi’nin tahmin edilmesi ve literatürdeki diğer çalışmalarla birlikte, GA’nın ML uygulamalarıyla tahmin çalışmalarına yönelik farkındalık yaratılması amaçlanmıştır. Güneş Aktivitesinin en önemli göstergelerinden biri olan Güneş Lekesi Sayısı (SSN) temel alınarak, NAR (Doğrusal Olmayan Otoregresif) modeli ile 25. Güneş Çevrimi’nin aylık değerlerinin tahmini gerçekleştirilmiştir. Bu tahminler, ML algoritmalarından Destek Vektör Makinesi (SVM), Rastgele Orman (RF), k-En Yakın Komşular (kNN) ve Gradyan Arttırma (GB) kullanılarak yapılmıştır. Sonuçlar, Ortalama Karekök Hata (RMSE), Ortalama Mutlak Hata (MAE), Pearson Korelasyon Katsayısı (PCC) ve Nash-Sutcliffe Etkililik Katsayısı (NSE) ile değerlendirilerek, çevrim değerlerinin tahmin sonuçlarıyla karşılaştırılmıştır. Oluşturulan modeller, ilk adımda NAR ve sonraki adımlarda SVM, kNN, GB olmak üzere sırasıyla NAR-SVM, NAR-RF, NAR-kNN ve NAR-GB şeklinde adlandırılmıştır. Modellerin tahmin ettiği maksimum değerler 117.43-117.99 aralığında değişmektedir (NAR ile maksimum değer 118.13 olarak üretilmiştir). RMSE değerleri 0.08–0.72, MAE değerleri 0.07–0.47 arasındadır. PCC değerleri 0.99 ve NSE değerleri de 0.99 olarak bulunmuştur. Sonuçlar, literatürdeki diğer çalışmaların sonuçlarıyla karşılaştırılmıştır.}, number={Special Issue: UAK2024 Proc.}, publisher={Türk Astronomi Derneği}