TY - JOUR T1 - Periyodik Sınır Koşullu Lineer Olmayan Hiperbolik Problemin Yakınsaklık Analizi TT - Convergence Analysis of Nonlinear Hyperbolic Problem with Periodic Boundary Conditions AU - Bağlan, İrem AU - Yernazar, Akbala PY - 2024 DA - December Y2 - 2024 JF - ADÜ Fen ve Mühendislik Bilimleri Dergisi JO - adufmbd PB - Aydin Adnan Menderes University WT - DergiPark SP - 84 EP - 91 VL - 1 IS - 2 LA - tr AB - Bu çalışmada, periyodik sınır koşullarına sahip bir boyutlu lineer olmayan hiperbolik denklemi için zamana bağlı katsayıların belirlenmesine yönelik bir ters problem ele alınmıştır. Periyodik sınır koşullar sinüs, kosinüs biçimindeki özfonksiyonları içerir ve her özdeğer iki özfonksiyona karşılık geldiği için çözüm sürecini karmaşıklaştırmaktadır. Bu tür lokal olmayan sınır koşullarına sahip alanlarda sınır değer problemlerini çözmekte etkili olan genelleştirilmiş Fourier yöntemi kullanılmıştır. Picard ardışık yaklaşımlar yöntemi ile çözümün varlığı, yakınsaklığı ve tekliği kanıtlanmıştır. KW - Ters problem KW - Hiperbolik denklem KW - Periyodik sınır koşulu KW - Fourier yöntemi N2 - In this paper, an inverse problem for the determination of time-dependent coefficients for a one-dimensiоnаl nonlinеаr hypеrbоlic equation with periоdic bоundаrу conditions is considered. The periodic boundary conditions involve eigenfunctions in the form of sine, cosine and each eigenvalue corresponds to two eigenfunctions, which complicates the solution process. The generalised Fourier method, effective for solving boundary value problems in domains with such non-local boundary conditions, is used. The existence, uniqueness and convergence of the solution are proved using the Picard method of successive approximations. CR - Baglan, I. (2015). Determination of a coefficient in a quasilinear parabolic equation with periodic boundary condition. Inverse Problems in Science and Engineering, 23(5), 884-900. doi: 10.1080/17415977.2014.947479 CR - Baglan, I., Kanca, F. (2021). Fourier method for higher dimensional inverse quasi‐linear parabolic problem. Numerical Methods for Partial Differential Equations, 37(3), 2222-2234. doi: 10.1002/num.22682 CR - Cannon, J. R. (1963). The solution of the heat equation subject to the specification of energy. Quarterly of Applied Mathematics, 21(2), 155-160. CR - Denisov, A. M. (2019). Existence of a solution of the inverse coefficient problem for a quasilinear hyperbolic equation. Computational Mathematics and Mathematical Physics, 59, 550-558. doi: 10.1134/S096554251904002X CR - Denisov, A. M., Shirkova, E. Y. (2013). Inverse problem for a quasilinear hyperbolic equation with a nonlocal boundary condition containing a delay argument. Differential Equations, 49, 1053-1061. doi: 10.1134/S0012266113090012 CR - Huang, X., Imanuvilov, O. and Yamamoto, M.(2020). Stability for inverse source problems by Carleman estimates. Inverse Problems, 36(12), doi: 10.1088/1361-6420/aba892 CR - Ionkin, N.I. (1977). Solution of a boundary value problem in heat conduction with a nonclassical boundary condition, Differential Equations, 13, 204-211. CR - Ismailov, M.I., Tekin, I. (2016). Inverse coefficient problems for a first order hyperbolic system. Applied Numerical Mathematics, 106, 98-115. doi: 10.1016/j.apnum.2016.02.008 CR - Jiang, D., Liu, Y., Yamamoto, Y. (2017). Inverse source problem for the hyperbolic equation with a time-dependent principal part. Journal of Differential Equations, 262( 1), 653-681. doi: 10.1016/j.jde.2016.09.036 CR - Kamynin, L. I. (1964). A boundary-value problem in the theory of heat conduction with non-classical boundary conditions. Zh. Vychisl. Mat. Mat. Fiz, 4(6), 1006-1024. doi: 10.1016/0041-5553(64)90080-1 CR - Kanca, F., Baglan, I. (2017). Solution of two-dimensional non-linear Burgers’ equations with nonlocal boundary condition. Malaya Journal of Matematik, 5(04), 675-679. doi: 10.26637/MJM0504/0010 CR - Kanca, F., Baglan, I. (2018). Inverse problem for Euler-Bernoulli equation with periodic boundary condition. Filomat, 32(16). doi: 10.2298/FIL1816691K CR - Loc Hoang, N. (2019). An inverse space-dependent source problem for hyperbolic equations and the Lipschitz-like convergence of the quasi-reversibility method. Inverse Problems,35(3), doi: 10.1088/1361-6420/aafe8f CR - Protsakh, N. (2024). Inverse problem for semilinear wave equation with strong damping. Frontiers in Applied Mathematics and Statistics, 10, 1-12, doi: 10.3389/fams.2024.1467441 CR - Romanov, V.G. , Bugueva T.V. (2024) . An inverse problem for a nonlinear hyperbolic equation. Eurasian Journal of Mathematical and Computer Applications. 12(2) , 134–154. CR - Sieradzan, A. K. (2015). Introduction of periodic boundary conditions into unres force field. Journal of Computational Chemistry, 36(12), 940-946. doi:10.1002/jcc.23864 CR - Tekin, I. (2019). Determination of a time-dependent coefficient in a wave equation with unusual boundary condition. Filomat, 33(9), 2653-2665. doi: 10.2298/FIL1909653T CR - Yıldız, M. (2014). Hiperbolik Türden Bir Denklem için Bir Katsayı Ters Problemi. Karaelmas Fen ve Mühendislik Dergisi, 4(2): 59-63. UR - https://dergipark.org.tr/en/pub/adufmbd/article/1594219 L1 - https://dergipark.org.tr/en/download/article-file/4406932 ER -