TY - JOUR T1 - Boron as a protective agent in reducing paracetamol-induced testicular toxicity in rats: A biochemical perspective TT - Sıçanlarda Parasetamol Kaynaklı Testis Toksisitesinde Terapötik Bir Ajan Olarak Bor: Biyokimyasal Bir Bakış Açısı AU - Aktas Senocak, Esra AU - Utlu, Necati PY - 2025 DA - June Y2 - 2025 DO - 10.30728/boron.1595247 JF - Journal of Boron PB - TENMAK Bor Araştırma Enstitüsü WT - DergiPark SN - 2149-9020 SP - 61 EP - 67 VL - 10 IS - 2 LA - en AB - In the study, the protective effects of boron against paracetamol (PR)-induced toxicity in rat testicular tissue were investigated using various biochemical parameters. Rats were categorized into five groups and administered 50 and 100 mg/kg of boron (sodium pentaborate) orally for six days, followed by a single dosage of 1 g/kg of paracetamol to induce toxicity. Testicular tissues were assessed using ELISA and levels of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), cysteine-aspartic acid protease (Caspase-3), malondialdehyde (MDA), reduced glutathione (GSH), tumor necrosis factor-α (TNF-α), and interleukin-1 beta (IL-1β) were assessed. A significant decrease in SOD, CAT, GPx activities and GSH levels and an increase in MDA levels were observed in the PR group. Boron (B) treatment was found to increase antioxidant levels while decreasing lipid peroxidation, inflammation and apoptosis markers in paracetamol-induced testicular toxicity (p KW - boron KW - inflammation KW - oxidative stress KW - paracetamol toxicity KW - testicular damage N2 - Çalışmada, sıçan testis dokusunda parasetamol (PR) kaynaklı toksisiteye karşı borun koruyucu etkileri çeşitli biyokimyasal parametreler kullanılarak araştırıldı. Sıçanlar beş gruba ayrıldı ve altı gün boyunca oral yoldan 50 ve 100 mg/kg bor (sodyum pentaborat) verildi, ardından toksisiteyi oluşturmak için tek doz 1 g/kg parasetamol verildi. Testis dokuları ELISA kullanılarak değerlendirildi ve süperoksit dismutaz (SOD), katalaz (CAT), glutatyon peroksidaz (GPx), sistein-aspartik asit proteaz (Kaspaz-3), malondialdehit (MDA), indirgenmiş glutatyon (GSH), tümör nekroz faktörü-α (TNF-α) ve interlökin-1 beta (IL-1β) düzeyleri değerlendirildi. PR grubunda SOD, CAT, GPx aktiviteleri ve GSH düzeylerinde anlamlı azalma, MDA düzeylerinde ise artış gözlendi. Bor (B) tedavisinin parasetamol kaynaklı testis toksisitesinde antioksidan seviyelerini artırırken lipid peroksidasyonunu, inflamasyonu ve apoptozis belirteçlerini azalttığı bulundu (p CR - [1] Freo, U., Ruocco, C., Valerio, A., Scagnol, I., & Nisoli, E. (2021). Paracetamol: A review of guideline recommendations. Journal of Clinical Medicine, 10(15), 3420. https://doi.org/10.3390/JCM10153420 CR - [2] James, L. P., Mayeux, P. R., & Hinson, J. A. (2003). Acetaminophen-induced hepatotoxicity. Drug Metabolism and Disposition, 31(12), 1499-1506. https://doi.org/10.1124/dmd.31.12.1499 CR - [3] Prescott, L. F. (2000). Paracetamol, alcohol and the liver. British Journal of Clinical Pharmacology, 49(4), 291-301. https://doi.org/10.1046/j.1365-2125.2000.00167.x CR - [4] Ahmed, M. B., & Khater, M. R. (2001). Evaluation of the protective potential of Ambrosia maritima extract on acetaminophen-induced liver damage. Journal of Ethnopharmacology, 75(2-3), 169-174. https://doi.org/10.1016/S0378-8741(00)00400-1 CR - [5] El-Maddawy, Z. K., & El-Sayed, Y. S. (2018). Comparative analysis of the protective effects of curcumin and N-acetyl cysteine against paracetamol-induced hepatic, renal, and testicular toxicity in Wistar rats. Environmental Science and Pollution Research, 25, 3468-3479. https://doi.org/10.1007/s11356-017-0750-3 CR - [6] Hiragi, S., Yamada, H., Tsukamoto, T., Yoshida, K., Kondo, N., Matsubara, T., ... & Kuroda, T. (2018). Acetaminophen administration and the risk of acute kidney injury: A self-controlled case series study. Clinical Epidemiology, 10, 265-276. https://doi.org/10.2147/CLEP.S158110 [7] Boekelheide, K. (2005). Mechanisms of toxic damage to spermatogenesis. JNCI Monographs, 2005(34), 6-8. https://doi.org/10.1093/JNCIMONOGRAPHS/LGI006 CR - [8] Banihani, S. A. (2018). Effect of paracetamol on semen quality. Andrologia, 50(1). https://doi.org/10.1111/ AND.12874 CR - [9] Bolaños, L., Lukaszewski, K., Bonilla, I., & Blevins, D. (2004). Why boron? Plant Physiology and Biochemistry, 42(11), 907-912. https://doi.org/10.1016/J. PLAPHY.2004.11.002 CR - [10] Lovatt, C. J., & Dugger, W. M. (1984). Boron. In E. Frieden (Ed.), Biochemistry of the Essential Ultratrace Elements (Vol. 3, pp. 389-421). https://doi.org/10.1007/978-1-4684-4775-0_17 CR - [11] Devirian, T. A., & Volpe, S. L. (2003). The physiological effects of dietary boron. Critical Reviews in Food Science and Nutrition, 43(2). https://doi.org/10.1080/10408690390826491 CR - [12] Nielsen, F. H. (2017). Historical and recent aspects of boron in human and animal health. Journal of Boron, 2(3), 153-160. https://dergipark.org.tr/en/pub/boron/ issue/33625/373093 CR - [13] Dessordi, R., Spirlandeli, A. L., Zamarioli, A., Volpon, J. B., & Navarro, A. M. (2017). Boron supplementation improves bone health of non-obese diabetic mice. Journal of Trace Elements in Medicine and Biology, 39, 169-175. https://doi.org/10.1016/j.jtemb.2016.09.011 CR - [14] Meacham, S. L., Taper, L. J., & Volpe, S. L. (1994). Effects of boron supplementation on bone mineral density and dietary, blood, and urinary calcium, phosphorus, magnesium, and boron in female athletes. Environmental Health Perspectives, 102(suppl 7), 79- 82. https://doi.org/10.1289/EHP.94102S779 CR - [15] Armstrong, T. A., Spears, J. W., & Lloyd, K. E. (2001). Inflammatory response, growth, and thyroid hormone concentrations are affected by long-term boron supplementation in gilts. Journal of Animal Science, 79(6), 1549-1556. https://doi.org/10.2527/2001.7961549x CR - [16] Uluisik, I., Karakaya, H. C., & Koc, A. (2018). The importance of boron in biological systems. Journal of Trace Elements in Medicine and Biology, 45, 156-162. https://doi.org/10.1016/J.JTEMB.2017.10.008 CR - [17] Türkez, H., Geyikoǧlu, F., Tatar, A., Keleş, S., & Özkan, A. (2007). Effects of some boron compounds on peripheral human blood. Zeitschrift für Naturforschung C, 62(11- 12), 889-896. https://doi.org/10.1515/znc-2007-11-1218 CR - [18] Ince, S., Kucukkurt, I., Cigerci, I. H., Fidan, A. F., & Eryavuz, A. (2010). The effects of dietary boric acid and borax supplementation on lipid peroxidation, antioxidant activity, and DNA damage in rats. Journal of Trace Elements in Medicine and Biology, 24(3), 161-164. https://doi.org/10.1016/j.jtemb.2010.01.003 CR - [19] Kucukkurt, I., Ince, S., Demirel, H. H., Turkmen, R., Akbel, E., & Celik, Y. (2015). The effects of boron on arsenic-ınduced lipid peroxidation and antioxidant status in male and female rats. Journal of Biochemical and Molecular Toxicology, 29(12), 564-571. https://doi.org/10.1002/jbt.21729 CR - [20] Smoum, R., Rubinstein, A., Dembitsky, V. M., & Srebnik, M. (2012). Boron containing compounds as protease inhibitors. Chemical Reviews, 112(7), 4156-4220. https://doi.org/10.1021/cr608202m CR - [21] Fry, R. S., Brown Jr, T. T., Lloyd, K. E., Hansen, S. L., Legleiter, L. R., Robarge, W. P., & Spears, J. W. (2011). Effect of dietary boron on physiological responses in growing steers inoculated with bovine herpesvirus type- 1. Research in Veterinary Science, 90(1), 78-83. https:// doi.org/10.1016/J.RVSC.2010.04.016 CR - [22] Comba, B., Oto, G., Mis, L., Özdemir, H., & Comba, A. (2016). Effects of borax on inflammation, haematological parameters and total oxidant-antioxidant status in rats applied 3-methylcholanthrene. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 22(4). https://doi.org/10.9775/kvfd.2016.15001 CR - [23] Acaroz, U., Ince, S., Arslan-Acaroz, D., Gurler, Z., Demirel, H. H., Kucukkurt, I., ... & Zhu, K. (2019). Bisphenol-A induced oxidative stress, inflammatory gene expression, and metabolic and histopathological changes in male Wistar albino rats: Protective role of boron. Toxicology Research, 8(2), 262-269. https://doi.org/10.1039/C8TX00312B CR - [24] Cengiz, M., Sahinturk, V., Cetik Yildiz, S., Kulcanay Şahin, İ., Bilici, N., Onur Yaman, S., … & Ayhanci, A. (2020). Cyclophosphamide induced oxidative stress, lipid peroxidation, apoptosis and histopathological changes in rats: Protective role of boron. Journal of Trace Elements in Medicine and Biology, 62, 126574. https://doi.org/10.1016/j.jtemb.2020.126574 CR - [25] Aba, P. E., Ozioko, I. E., Udem, N. D., & Udem, S. C. (2014). Some biochemical and haematological changes in rats pretreated with aqueous stem bark extract of Lophira lanceolata and intoxicated with paracetamol (acetaminophen). Journal of Complementary and Integrative Medicine, 11(4), 273-277. https://doi.org/10.1515/jcim-2014-0007 CR - [26] Ucar, F., Taslipinar, M. Y., Alp, B. F., Aydin, I., Aydin, F. N., Agilli, M., ... & Ozcan, A. (2013). The effects of N acetylcysteine and ozone therapy on oxidative stress and inflammation in acetaminophen-induced nephrotoxicity model. Renal Failure, 35(5), 640-647. https://doi.org/10.3109/0886022X.2013.780530 CR - [27] Ince, S., Keles, H., Erdogan, M., Hazman, O., & Kucukkurt, I. (2012). Protective effect of boric acid against carbon tetrachloride–induced hepatotoxicity in mice. Drug and Chemical Toxicology, 35(3), 285-292. https://doi.org/10.3109/01480545.2011.607825 CR - [28] Abdel-Zaher, A. O., Abdel-Rahman, M. M., Hafez, M. M., & Omran, F. M. (2007). Role of nitric oxide and reduced glutathione in the protective effects of aminoguanidine, gadolinium chloride and oleanolic acid against acetaminophen-induced hepatic and renal damage. Toxicology, 234(1-2), 124-134. https://doi.org/10.1016/j.tox.2007.02.014 CR - [29] Başaran, N., Duydu, Y., Bacanlı, M., Anlar, H. G., Dilsiz, S. A., Üstündağ, A., ... & Bolt, H. M. (2020). Evaluation of oxidative stress and immune parameters of boron exposed males and females. Food and Chemical Toxicology, 142, 111488. https://doi.org/10.1016/j.fct.2020.111488 CR - [30] Salem, G. A., Shaban, A., Diab, H. A., Elsaghayer, W. A., Mjedib, M. D., Hnesh, A. M., & Sahu, R. P. (2018). Phoenix dactylifera protects against oxidative stress and hepatic injury induced by paracetamol intoxication in rats. Biomedicine & Pharmacotherapy, 104, 366-374. https://doi.org/10.1016/j.biopha.2018.05.049 CR - [31] Masson, M. J., Collins, L. A., Carpenter, L. D., Graf, M. L., Ryan, P. M., Bourdi, M., & Pohl, L. R. (2010). Pathologic role of stressed-induced glucocorticoids in drug-induced liver injury in mice. Biochemical and Biophysical Research Communications, 397(3), 453- 458. https://doi.org/10.1016/j.bbrc.2010.05.126 CR - [32] Ozkaya, O., Genc, G., Bek, K., & Sullu, Y. (2010). A case of acetaminophen (paracetamol) causing renal failure without liver damage in a child and review of literature. Renal Failure, 32(9), 1125-1127. https://doi.org/10.3109/0886022X.2010.509830 CR - [33] Sundari, K., Karthik, D., Ilavenil, S., Kaleeswaran, B., Srigopalram, S., & Ravikumar, S. (2013). Hepatoprotective and proteomic mechanism of Sphaeranthus indicus in paracetamol induced hepatotoxicity in Wistar rats. Food Bioscience, 1, 57-65. https://doi.org/10.1016/j.fbio.2013.03.004 CR - [34] Mohammed, H. O., & Sabry, R. M. (2020). The possible role of curcumin against changes caused by paracetamol in testis of adult albino rat (histological, immunohistochemical and biochemical study). Egyptian Journal of Histology, 43(3), 819-834. https://doi.org/10.21608/EJH.2019.18599.1189 CR - [35] Diab, K. A., Fahmy, M. A., Hassan, E. M., Hassan, Z. M., Omara, E. A., & Abdel-Samie, N. S. (2020). Inhibitory activity of black mulberry (Morus nigra) extract against testicular, liver and kidney toxicity induced by paracetamol in mice. Molecular Biology Reports, 47(3), 1733-1749. https://doi.org/10.1007/s11033-020-05265-1 CR - [36] Khayyat, L. I. (2021). Extra virgin olive oil protects the testis and blood from the toxicity of paracetamol (overdose) in adult male rats. Biology, 10(10), 1042. https://doi.org/10.3390/BIOLOGY10101042 CR - [37] Aksu, E. H., Ozkaraca, M., Kandemir, F. M., Ömür, A. D., Eldutar, E., Küçükler, S., & Çomaklı, S. (2016). Mitigation of paracetamol-induced reproductive damage by chrysin in male rats via reducing oxidative stress. Andrologia, 48(10), 1145-1154. https://doi.org/10.1111/AND.12553 CR - [38] Kucukkurt, I., Akbel, E., Karabag, F., & Ince, S. (2015). The effects of dietary boron compounds in supplemented diet on hormonal activity and some biochemical parameters in rats. Toxicology and Industrial Health, 31(3), 255-260. https://doi.org/10.1177/0748233712469648 CR - [39] Hakki, S. S., Malkoc, S., Dundar, N., Kayis, S. A., Hakki, E. E., Hamurcu, M., ... & Götz, W. (2015). Dietary boron does not affect tooth strength, micro-hardness, and density, but affects tooth mineral composition and alveolar bone mineral density in rabbits fed a high-energy diet. Journal of Trace Elements in Medicine and Biology, 29, 208-215. https://doi.org/10.1016/j.jtemb.2014.10.007 CR - [40] Jin, E., Ren, M., Liu, W., Liang, S., Hu, Q., Gu, Y., & Li, S. (2017). Effect of boron on thymic cytokine expression, hormone secretion, antioxidant functions, cell proliferation, and apoptosis potential via the extracellular signal-regulated kinases 1 and 2 signaling pathway. Journal of Agricultural and Food Chemistry, 65(51), 11280-11291. https://doi.org/10.1021/acs.jafc.7b04069 CR - [41] Pizzorno, L. (2015). Nothing boring about boron. Integrative Medicine: A Clinician's Journal, 14(4), 35. https://pmc.ncbi.nlm.nih.gov/articles/PMC4712861/ CR - [42] Krishnan, B. B., Selvaraju, S., Gowda, N. K. S., Subramanya, K. B., Pal, D., Archana, S. S., & Bhatta, R. (2019). Dietary boron supplementation enhances sperm quality and immunity through influencing the associated biochemical parameters and modulating the genes expression at testicular tissue. Journal of Trace Elements in Medicine and Biology, 55, 6-14. https://doi.org/10.1016/J.JTEMB.2019.05.004 CR - [43] Bustos-Obregón, E., & Olivares, C. (2012). Boron as testicular toxicant in mice (Mus domesticus). International Journal of Morphology, 30(3), 1106-1114. https://doi.org/10.4067/S0717-95022012000300057 CR - [44] Aktas, S., Kum, C., & Aksoy, M. (2020). Effects of boric acid feeding on the oxidative stress parameters in testes, sperm parameters and DNA damage in mice. Journal of Trace Elements in Medicine and Biology, 58, 126447. https://doi.org/10.1016/J.JTEMB.2019.126447 CR - [45] Su, Z., Yang, Z., Xu, Y., Chen, Y., & Yu, Q. (2015). Apoptosis, autophagy, necroptosis, and cancer metastasis. Molecular Cancer, 14(48), 1-14. https://doi.org/10.1186/s12943-015-0321-5 CR - [46] Singh, P., & Lim, B. (2022). Targeting apoptosis in cancer. Current Oncology Reports, 24(3), 273-284. https://doi.org/10.1007/s11912-022-01199-y CR - [47] Mustafa, M., Ahmad, R., Tantry, I. Q., Ahmad, W., Siddiqui, S., Alam, M., ... & Islam, S. (2024). Apoptosis: A comprehensive overview of signaling pathways, morphological changes, and physiological significance and therapeutic implications. Cells, 13(22), 1838. https://doi.org/10.3390/CELLS1322183 CR - [48] Asadi, M., Taghizadeh, S., Kaviani, E., Vakili, O., Taheri- Anganeh, M., Tahamtan, M., & Savardashtaki, A. (2022). Caspase-3: Structure, function, and biotechnological aspects. Biotechnology and Applied Biochemistry, 69(4), 1633-1645. https://doi.org/10.1002/BAB.2233 CR - [49] Garlanda, C., Dinarello, C. A., & Mantovani, A. (2013). The interleukin-1 family: Back to the future. Immunity, 39(6), 1003-1018. https://doi.org/10.1016/j.immuni.2013.11.010 CR - [50] Vilček, J., & Feldmann, M. (2004). Historical review: Cytokines as therapeutics and targets of therapeutics. Trends in Pharmacological Sciences, 25(4), 201-209. https://doi.org/10.1016/j.tips.2004.02.011 CR - [51] Ekaluo, U. B., Ikpeme, E. V., & Udokpoh, A. E. (2009). Sperm head abnormality and mutagenic effects of aspirin, paracetamol and caffeine containing analgesics in rats. The Internet Journal of Toxicology, 7(1), 1-9. https://ispub.com/IJTO/7/1/10849 CR - [52] Acaroz, U., Ince, S., Arslan-Acaroz, D., Gurler, Z., Kucukkurt, I., Demirel, H. H., ... & Zhu, K. (2018). The ameliorative effects of boron against acrylamide-induced oxidative stress, inflammatory response, and metabolic changes in rats. Food and Chemical Toxicology, 118, 745-752. https://doi.org/10.1016/j.fct.2018.06.029 UR - https://doi.org/10.30728/boron.1595247 L1 - https://dergipark.org.tr/en/download/article-file/4411840 ER -