TY - JOUR T1 - Gear Train Design Solutions via Hypersphere Dynamics Driven Advanced Particle Swarm Optimization TT - Hiperküre Dinamikleriyle Geliştirilmiş Parçacık Sürü Optimizasyonu Kullanılarak Dişli Tasarımı Problemi Çözümleri AU - Gör, İclal PY - 2025 DA - June Y2 - 2025 DO - 10.17798/bitlisfen.1598152 JF - Bitlis Eren Üniversitesi Fen Bilimleri Dergisi PB - Bitlis Eren University WT - DergiPark SN - 2147-3129 SP - 806 EP - 837 VL - 14 IS - 2 LA - en AB - This work presents an advanced version of the Particle Swarm Optimization (PSO) algorithm, a well-known optimization algorithm for the solution of the global optimization problems, called PSO with Hypersphere Dynamics and Mutation (PSO-HDM), to deal with the optimization obstacles. The novel method employs a novel technique where the particles’ positions are updated using the rotation of the hyperspheres, providing for better exploration of the search space. In addition, two new mutation techniques, Jitter and Gaussian, are used to keep away from the local optima and enhance the solution variety. Dynamic modifications of the classical PSO’s parameters, such as cognitive and social coefficients, also improve the algorithm’s achievement. The PSO-HDM optimization algorithm is evaluated with utilizing some benchmark functions and compared to classical PSO, getting better values in determining the optimal solutions. Gear train design problems are selected as an engineering design problem to show the effectiveness of the new suggested method. The obtained results present the capability of the proposed method. This proposed optimization algorithm could be seen as an alternative method to other optimization algorithms proposed in the literature. KW - Optimization KW - Metaheuristic algorithms KW - Particle Swarm Optimization KW - Mutation KW - Hypersphere KW - Gear train design problem. N2 - Bu çalışma, küresel optimizasyon problemlerinin çözümünde yaygın olarak kullanılan bir optimizasyon algoritması olan Parçacık Sürü Optimizasyonu'nun (PSO) gelişmiş bir versiyonunu sunmaktadır. Hiperküre Dinamikleri ve Mutasyonlu PSO (PSO-HDM) olarak adlandırılan bu yöntem, optimizasyon engelleriyle başa çıkmak için geliştirilmiştir. Yeni yöntem, parçacıkların konumlarının hiperkürelerin dönüşü kullanılarak güncellendiği yenilikçi bir teknik kullanmakta ve bu sayede arama uzayının daha iyi keşfedilmesini sağlamaktadır.Buna ek olarak, Jitter ve Gaussian adında iki yeni mutasyon tekniği, yerel optimumlardan kaçınmak ve çözüm çeşitliliğini artırmak için uygulanmaktadır. Klasik PSO'nun bilişsel ve sosyal katsayılar gibi parametrelerinin dinamik olarak değiştirilmesi, algoritmanın başarımını daha da artırmaktadır.PSO-HDM optimizasyon algoritması, bazı temel test fonksiyonları kullanılarak değerlendirilmiş ve klasik PSO ile karşılaştırıldığında, optimum çözümleri belirlemede daha iyi sonuçlar elde etmiştir. Yeni önerilen yöntemin etkinliğini göstermek için, bir mühendislik tasarım problemi olarak dişli treni tasarımı problemi seçilmiştir. Elde edilen sonuçlar, önerilen yöntemin yetkinliğini göstermektedir. Bu önerilen optimizasyon algoritması, literatürde önerilen diğer optimizasyon algoritmalarına bir alternatif olarak görülebilir. CR - M.-H. Lin, J.-F. Tsai, N.-Z. Hu, and S.-C. Chang, “Design optimization of a speed reducer using deterministic techniques,” Mathematical Problems in Engineering, vol. 2013, pp. 1–7, 2013. doi: 10.1155/2013/419043. CR - L. Costa and P. Oliveira, “Evolutionary algorithms approach to the solution of mixed integer non-linear programming problems,” Computers and Chemical Engineering, vol. 25, no. 2–3, pp. 257–266, 2001. doi: 10.1016/S0098-1354(00)00653-0. CR - M. Braik, A. Sheta, and H. Al-Hiary, “A novel meta-heuristic search algorithm for solving optimization problems: capuchin search algorithm,” Neural Computing and Applications., vol. 33, no. 7, pp. 2515–2547, 2021, doi: 10.1007/s00521-020-05145-6. CR - E. Eker, M. Kayri, S. Ekinci and M.A. Kaçmaz, “Performance evaluation of PDO algorithm through benchmark functions and MLP training,” Electrica, vol. 23, no. 3, pp. 597-606, 2023, doi: 10.5152/electr.2023.22179. CR - D. H. Wolpert and W. G. Macready, "No free lunch theorems for optimization," in IEEE Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 67-82, April 1997, doi: 10.1109/4235.585893. CR - R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” In Proceedings of the MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 1995, pp. 39–43, 1995, doi: 10.1109/MHS.1995.494215. CR - S. Gopi and P. Mohapatra, “A modified grey wolf optimization algorithm to solve global optimization problems,” OPSEARCH, vol.62, pp. 337-367, 2025, doi: 10.1007/s12597-024-00785-x. CR - S. Kaur, L. K. Awasthi, A. L. Sangal, and G. Dhiman, “Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization,” Engineering Applications of Artificial Intelligence, vol. 90, no. 103541, pp. 103541, 2020. CR - S. Mirjalili, A.H. Gandomi, A.H., S.Z. Mirjalili, S. Saremi, H. Faris, S.M., Mirjalili, “Salp swarm algorithm: a bio-inspired optimizer for engineering design problems,” Advances in Engineering Software, vol. 114, pp. 163–191, 2017, doi: 10.1016/j.advengsoft.2017.07.002. CR - S. Mirjalili, S.M. Mirjalili and A. Hatamlou, “Multi-verse optimizer: a nature-inspired algorithm for global optimization,” Neural Computing and Applications. vol. 27, pp. 495–513, 2016, doi: 10.1007/s00521-015-1870-7. CR - S. Mirjalili, S.M. Mirjalili and A. Lewis, “Grey wolf optimizer,” Advances in Engineering Software. vol. 69, 46–61, 2014, doi: 10.1016/j.advengsoft.2013.12.007. CR - Y. Li, X. Lin and J. Liu, “An improved gray wolf optimization algorithm to solve engineering problems,” Sustainability, vol. 13, no. 6, pp. 3208, 2021, doi: 10.1016/j.eswa.2020.113917. CR - B. Duan, C. Guo, and H. Liu, “A hybrid genetic-particle swarm optimization algorithm for multi-constraint optimization problems,” Soft Computing, vol. 26, no. 21, pp. 11695–11711, 2022, doi: 10.1007/s00500-022-07489-8. CR - S. Mirjalili, “The Ant Lion Optimizer,” Advances in Engineering Software, vol. 83, pp. 80-98, 2015, doi: 10.1016/j.advengsoft.2015.01.010. CR - A.H. Gandomi, X.S. Yang and A.H. Alavi. “Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems,” Engineering Computations, vol. 29, pp.17–35, 2013, doi: 10.1007/s00366-011-0241-y. CR - A. Sadollah, A. Bahreininejad, H. Eskandar and M. Hamdi, “Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems,” Applied Soft Computing, vol. 13, pp. 2592–612, 2013, doi: 10.1016/j.asoc.2012.11.026. CR - A. H. Gandomi, “Interior search algorithm (ISA): a novel approach for global optimization,” ISA Transactions, vol. 53, no. 4, pp. 1168-1183, 2014, doi: 10.1016/j.isatra.2014.03.018. CR - S-J. Wu and P.-T. Chow. “Genetic algorithms for nonlinear mixed discrete-integer optimization problems via meta-genetic parameter optimization,” Engineering Optimization, vol. 24, no. 2, pp. 137-159, 1995, doi: 10.1080/03052159508941187. CR - D. Karaboga and B. Basturk. “Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems,” In Proceedings of International Fuzzy Systems Association World Congress, pp.789–798, 2007, doi: 10.1007/978-3-540-72950-1_77. CR - K. Deb and M. Goyal, “A combined genetic adaptive search (GeneAS) for engineering design,” Computer Science and Information, vol. 26, pp.30–45, 1996. CR - B. Kannan B and S.N. Kramer, “An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design,” Journal of Mechanical Design, vol. 116, pp. 405–11, 1994, doi: 10.1115/1.2919393. CR - S.Mirjalili, “Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm,” Knowledge-Based Systems, vol 89, pp. 228-249, 2015, doi: 10.1016/j.knosys.2015.07.006. CR - H. Peraza-Vazquez, A. F. Pena-Delgado, G. Echavarria- Castillo, A. B. Morales- Cepeda, J. Velasco-Alvarez, F. Ruiz-Perez, “A bio-inspired method for engineering design optimization inspired by dingoes hunting strategies,” Mathematical Problems in Engineering, vol. 202, pp. 11–19. 2021, doi: 10.1155/2021/9107547. CR - H. Karami, M.V. Anaraki, S. Farzin and S. Mirjalili, “Flow Direction Algorithm (FDA): A Novel Optimization Approach for Solving Optimization Problems,” Computers and Industrial Engineering, vol. 156, 107224, 2021, doi: 10.1016/j.cie.2021.107224. CR - A. Askarzadeh, “A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm,” Computers and Structures, vol. 169, pp. 1–12, 2016, doi: 10.1016/j.compstruc.2016.03.001. CR - Y. Duan, N. Chen, L. Chang, Y. Ni, S. V. N. S. Kumar and P. Zhang, “CAPSO: Chaos Adaptive Particle Swarm Optimization Algorithm,” in IEEE Access, vol. 10, pp. 29393-29405, 2022, doi: 10.1109/ACCESS.2022.3158666. CR - S. Zhao, D. Wang, “Elite-ordinary synergistic particle swarm optimization” Information Sciences, vol. 609, pp. 1567-1587, 2022, doi: 10.1016/j.ins.2022.07.131. CR - Q. Yang, X. Guo, X.D. Gao, D.D. Xu and Lu, Z.Y. “Differential Elite Learning Particle Swarm Optimization for Global Numerical Optimization,” Mathematics, vol. 10, no 8, pp. 1261, 2022, doi: 10.3390/math10081261. CR - K. Kassoul, N. Zufferey, N. Cheikhrouhou and S. Brahim Belhaouari, “Exponential Particle Swarm Optimization for Global Optimization,” in IEEE Access, vol. 10, pp. 78320-78344, 2022, doi: 10.1109/ACCESS.2022.3193396. CR - B.J. Solano-Rojas, R.Villalón-Fonseca and R. Batres, “Micro Evolutionary Particle Swarm Optimization (MEPSO): A new modified metaheuristic,” Systems and Soft Computing, vol 5, 200057, 2023, doi: 10.1016/j.sasc.2023.200057. CR - C. Wang, Z. Wang, S. Zhang and J. Tan, “Adam-assisted quantum particle swarm optimization guided by length of potential well for numerical function optimization,” Swarm and Evolutionary Computation, vol.79, 2023, doi: 10.1016/j.swevo.2023.101309. CR - J. Zhu, J. Liu, Y. Chen, X. Xue and S.Sun, “Binary Restructuring Particle Swarm Optimization and Its Application,” Biomimetics, vol. 8, no 2, pp. 266, 2023, doi: 10.3390/biomimetics8020266. CR - K. V. N. A. Bhargavi, G. P. S. Varma, I. Hemalatha, and R. Dilli, “An enhanced particle swarm optimization-based node deployment and coverage in sensor networks,” Sensors (Basel), vol. 24, no. 19, pp. 6238, 2024, doi: 10.3390/s24196238. CR - C. Gong, N. Zhou, S. Xia, and S. Huang, “Quantum particle swarm optimization algorithm based on diversity migration strategy,” Future Generation Computer Systems, vol. 157, pp. 445–458, 2024, doi: 10.1016/j.future.2024.04.008. CR - S. J. Fusic and R. Sitharthan, “Self-adaptive learning particle swarm optimization-based path planning of mobile robot using 2D Lidar environment,” Robotica, vol. 42, no. 4, pp. 977–1000, 2024, doi: 10.1017/S0263574723001819. CR - S. Yang, B. Wei, L. Deng, X. Jin, M. Jiang, Y. Huang and F. Wang, “A leader-adaptive particle swarm optimization with dimensionality reduction strategy for feature selection,” Swarm and Evolutionary Computation, vol. 91, no. 101743, pp. 101743, 2024, doi: 10.1016/j.swevo.2024.101743. CR - G. Hu, M. Cheng, G. Sheng, and G. Wei, “ACEPSO: A multiple adaptive co-evolved particle swarm optimization for solving engineering problems,” Advanced Engineering Informatics, vol. 61, no. 102516, pp. 102516, 2024, doi: 10.1016/j.aei.2024.102516. CR - R. Liu, L. Wei, and P. Zhang, “An adaptive particle swarm optimization with information interaction mechanism,” Machine Learning Science and Technology, vol. 5, no. 2, pp. 025080, 2024, doi: 10.1088/2632-2153/ad55a5. CR - P.K.K. Ranganna, S.G. Matt, C.-L. Chen, A.B. Jayachandra, and Y.-Y. Deng, “Fitness sharing chaotic particle swarm optimization (FSCPSO): A metaheuristic approach for allocating dynamic virtual machine (VM) in fog computing architecture,” Computers Materials and Continua, vol. 80, no. 2, pp. 2557–2578, 2024, doi: 10.32604/cmc.2024.051634. CR - Ambuj, H. Nagar, A. Paul, R. Machavaram, and P. Soni, “Reinforcement learning particle swarm optimization based trajectory planning of autonomous ground vehicle using 2D LiDAR point cloud,” Robotics and Autonomous Systems, vol. 178, no. 104723, pp. 104723, 2024, doi: 10.1016/j.robot.2024.104723. CR - D. Tian, Q. Xu, X. Yao, G. Zhang, Y. Li, and C. Xu, “Diversity-guided particle swarm optimization with multi-level learning strategy,” Swarm and Evolutionary Computation, vol. 86, no. 101533, pp. 101533, 2024, doi: 10.1016/j.swevo.2024.101533. CR - X. Long, W. Cai, L. Yang, and H. Huang, “Improved particle swarm optimization with reverse learning and neighbor adjustment for space surveillance network task scheduling,” Swarm and Evolutionary Computation, vol. 85, no. 101482, pp. 101482, 2024, doi: 10.1016/j.swevo.2024.101482. CR - K. Tang and C. Meng, “Particle swarm optimization algorithm using velocity pausing and adaptive strategy,” Symmetry (Basel), vol. 16, no. 6, pp. 661, 2024, doi: 10.3390/sym16060661. CR - C. Wang, S. Wang, G. Zhang, P. Takyi-Aninakwa, C. Fernandez, and J. Tao, “An improved particle swarm optimization-cubature Kalman particle filtering method for state-of-charge estimation of large-scale energy storage lithium-ion batteries,” Journal of Energy Storage, vol. 100, no. 113619, pp. 113619, 2024, doi: 10.1016/j.est.2024.113619. CR - M. Hoseiniasl and J.J. Fesharaki, “3D Optimization of Gear Train Layout Using Particle Swarm Optimization Algorithm,” Journal of Applied Computational Mechanics, vol. 6, no.4 ,pp. 823-840, 2020, doi:10.22055/JACM.2019.29093.1558. CR - M. Sedak and M. Rosić, “Hybrid Butterfly Optimization and Particle Swarm Optimization Algorithm-based constrained multi-objective nonlinear planetary gearbox optimization,” Applied Sciences (Basel), vol. 13, no. 21, pp. 11682, 2023, doi: 10.3390/app132111682. CR - E. Sandgren, “Nonlinear Integer and Discrete Programming in Mechanical Design Optimization,” Journal of Mechanical Design, vol. 112, no 2, pp. 223-229, 1990, doi: 10.1115/1.2912596. CR - H. Mutahira, V. Shin, U. Park and M. S. Muhammad, “Jitter noise modeling and its removal using recursive least squares in shape from focus systems,” Scientific Reports, vol. 12, 14015, 2022, doi: 10.1038/s41598-022-18150-7. CR - O. Bell. “Applications of Gaussian mutation for self adaptation in evolutionary Genetic Algorithms,” ArXiv:2201.00285, 2022, https://api.semanticscholar.org/CorpusID:245650445. CR - R.M. Zur, Y. Jiang and C.E. Metz, “Comparison of two methods of adding jitter to artificial neural network training,” International Congress Series, vol. 1268, pp. 886–889, 2004, doi: 10.1016/j.ics.2004.03.238. CR - K. Deb and D. Deb, “Analysing mutation schemes for real-parameter genetic algorithms,” International Journal of Artificial Intelligence and Soft Computing, 2014, doi: 10.1504/IJAISC.2014.059280. CR - M. Premkumar, Pradeep Jangir, R. Sowmya, Rajvikram Madurai Elavarasan, B. Santhosh Kumar, “Enhanced chaotic JAYA algorithm for parameter estimation of photovoltaic cell/modules,” ISA Transactions, vol. 116, pp. 139-166, 2021, doi: 10.1016/j.isatra.2021.01.045. CR - Z.Zhang, “Abnormal detection of pumping unit bearing based on extension theory,” IEEJ Transactions on Electrical and Electronic Engineering, vol.16, no 12, pp. 1647–1652, 2021, doi: 10.1002/tee.23468. CR - X.R. Zhao, Y.R. Zhou and Y. Xiang, “A grouping particle swarm optimizer,” Applied Intelligence, vol. 49, no., 8, pp. 2862–2873, 2019, doi: 10.1007/s10489-019-01409-4. CR - J.S. Guan, S. J. Hong, S. B. Kang, Y. Zeng, Y. Sun and C.M. Lin, “Robust adaptive recurrent cerebellar model neural network for non- linear system based on GPSO,” Frontiers in Neuroscience, Switz, vol. 13, pp. 390. 2019, doi: 10.3389/fnins.2019.00390. CR - W. Guo, C. Si, Y. Xue, Y. Mao, L. Wang, Q. Wu “A grouping particle swarm optimizer with personal-best-position guidance for large scale optimization,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 15, no. 6, pp. 1904–1915, 2018, doi: 10.1109/TCBB.2017.2701367. CR - L. T. Al-Bahrani, J. C. Patra, “A novel orthogonal PSO algorithm based on orthogonal diagonalization,” Swarm and Evolutionary Computation, vol. 40, pp. 1–23, 2018, doi: 10.1016/j.swevo.2017.12.004. CR - M. X. Song, K. Chen and J. Wang, “Three-dimensional wind turbine positioning using Gaussian particle swarm optimization with differential evolution,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 172, pp. 317–324. 2018, doi: 10.1016/j.jweia.2017.10.032. CR - S. Mirjalili and A. Lewis “The whale optimization algorithm,” Advances in Engineering Software, vol. 95, pp. 51–67, 2016, doi: 10.1016/j.advengsoft.2016.01.008. CR - S. A. K. Alrufaiaat and A. Q. J. “Robust decoding strategy of MIMO-STBC using one source Kurtosis based GPSO algorithm,” Journal of Ambient Intelligence and Humanized Computing, vol.12, no. 2, pp. 1967–1980. 2021, doi: 10.1007/s12652-020-02288-1. CR - D.R. Jones, C.D. Perttunen, B.E. Stuckman, “Lipschitzian optimization without the Lipschitz constant,” Journal of Optimization Theory and Application, vol. 79, no.1, pp.157–181, 1993, doi: 10.1007/BF00941892. CR - A. Duran and G. Caginalp, “Parameter optimization for differential equations in asset price forecasting,” Optimization Methods and Software, vol. 23, no. 4, pp. 551–574, 2008. Issue: Mathematical programming in data mining and machine learning, doi: 10.1080/10556780801996178. CR - M. Tuncel and A. Duran, “Effectiveness of grid and random approaches for a model parameter vector optimization,” Journal of Computational Science, vol. 67, no. 101960, 2023, doi: 10.1016/j.jocs.2023.101960. CR - H. Karami, M.J. Sanjari, and G.B. Gharehpetian, “Hyper-Spherical Search (HSS) algorithm: a novel meta-heuristic algorithm to optimize nonlinear functions,” Neural Computing and Applications, vol. 25, pp. 1455–1465, 2014, doi: 10.1007/s00521-014-1636-7 . CR - A. T., Tantu, and D.G. Biramo, “Power flow control and reliability improvement through adaptive PSO based network reconfiguration,” Heliyon, vol. 10, no. 17, pp. e36668, 2024, doi: 10.1016/j.heliyon.2024.e36668. CR - Z. Cui, and J. Zeng. “A Guaranteed Global Convergence Particle Swarm Optimizer,” In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds) Rough Sets and Current Trends in Computing. RSCTC 2004, Lecture Notes in Computer Science, vol. 3066. Springer, Berlin, Heidelberg, 2004, doi: 10.1007/978-3-540-25929-9_96. UR - https://doi.org/10.17798/bitlisfen.1598152 L1 - https://dergipark.org.tr/en/download/article-file/4425119 ER -