TY - JOUR T1 - DUCHENNE KAS DİSTROFİSİNDE YENİ UFUKLAR: NÜKLEER FAKTÖR KAPPA YOLU VE VAMOROLON’UN TEDAVİYE ETKİLERİ TT - NEW HORIZONS IN DUCHENNE MUSCLE DYSTROPHY: NUCLEAR FACTOR KAPPA PATHWAY AND THERAPEUTIC EFFECTS OF VAMOROLONE AU - Helvacı, Gülsüm AU - Bilgin, Aylin PY - 2025 DA - September Y2 - 2025 DO - 10.33483/jfpau.1601594 JF - Journal of Faculty of Pharmacy of Ankara University JO - J. Fac. Pharm. Ankara PB - Ankara University WT - DergiPark SN - 1015-3918 SP - 915 EP - 927 VL - 49 IS - 3 LA - tr AB - Amaç: Duchenne kas distrofisi (DMD), distrofin eksikliği nedeniyle kas dejenerasyonu ve zayıflığına yol açan X'e bağlı bir hastalıktır. Tedavide amaç, hastalığın ilerlemesini yavaşlatmak ve yaşam kalitesini artırmaktır. Nükleer faktör kappa B (NF-κB) yolu, inflamasyonla ilişkili genlerin düzenlenmesinde rol oynar ve bu yolun hedeflenmesi tedavi stratejilerinden biridir. Glukokortikoidler NF-κB yolunu inhibe ederek etki gösterse de, osteoporoz, hipertansiyon ve büyüme geriliği gibi ciddi yan etkilere yol açabilir. 2023’te FDA onayı alan vamorolon sentetik bir kortikosteroiddir. Vamorolon glukokortikoid reseptörlerini (GR) hedefler, ancak glukokortikoid yanıt elemanını (GRE) aktive etmez. Bu sayede, geleneksel kortikosteroidlere göre yan etkileri daha azdır. Bu derleme, NF-κB yolunun DMD tedavisindeki rolünü ve vamorolonun etkililik ve güvenlilik profilini değerlendiren çalışmaları incelemeyi amaçlamaktadır.Sonuç ve Tartışma: Geleneksel glukokortikoidler NF-κB’yi inhibe ederek DMD tedavisinde etkinlik gösterir, ancak ciddi yan etkilere neden olabilirler. Vamorolon, NF-κB yolunu benzer şekilde inhibe ederken GRE aktivasyonunu tetiklemediği için geleneksel glukokortikoidlere kıyasla daha az yan etki oluşturur. Klinik çalışmalar, vamorolon’un etkililiğinin glukokortikoidlere benzer olduğunu, ancak yan etkilerinin daha az olduğunu göstermiştir. Vamorolon, DMD tedavisinde geleneksel glukokortikoidlere alternatif olarak umut vaat eden bir ilaçtır. KW - Duchenne kas distrofisi KW - glukokortikoidler KW - nükleer faktör kappa KW - vamorolon N2 - Objective: Duchenne muscular dystrophy (DMD) is an X-linked disorder characterized by muscle degeneration and weakness due to dystrophin deficiency. The primary goal of treatment is to slow disease progression and improve quality of life. The nuclear factor kappa B (NF-κB) pathway plays a role in regulating inflammation-related genes and is a target for therapeutic strategies. Although glucocorticoids act by inhibiting the NF-κB pathway, they can cause serious side effects such as osteoporosis, hypertension and growth retardation. Vamorolone is a synthetic corticosteroid that received FDA approval in 2023. Vamorolone targets glucocorticoid receptors (GR) but does not activate the glucocorticoid response element (GRE). This results in fewer side effects than traditional corticosteroids. This review aims to examine studies evaluating the role of the NF-κB pathway in the treatment of DMD and the efficacy and safety profile of vamorolone. Result and Discussion: Traditional glucocorticoids show efficacy in the treatment of DMD by inhibiting NF-κB, but they can cause serious side effects. Vamorolone similarly inhibits the NF-κB pathway but does not trigger GRE activation, resulting in fewer side effects compared to traditional glucocorticoids. Clinical studies have shown that the efficacy of vamorolone is similar to glucocorticoids, but with fewer side effects. Vamorolone is a promising alternative to traditional glucocorticoids for the treatment of DMD. CR - 1. Bez Batti Angulski, A., Hosny, N., Cohen, H., Martin, A.A., Hahn, D., Bauer, J., Metzger, J.M. (2023). Duchenne muscular dystrophy: Disease mechanism and therapeutic strategies. Frontiers in Physiology, 14, 1183101. [CrossRef] CR - 2. Lee, J.I., Burckart, G.J. (1998). Nuclear factor kappa B: Important transcription factor and therapeutic target. The Journal of Clinical Pharmacology, 38(11), 981-993. [CrossRef] CR - 3. Duan, D., Goemans, N., Takeda, S.I., Mercuri, E., Aartsma-Rus, A. (2021). Duchenne muscular dystrophy. Nature Reviews Disease Primers, 7(1), 13. [CrossRef] CR - 4. D'Acquisto, F., May, M.J., Ghosh, S. (2002). Inhibition of nuclear factor kappa B (NF-B). Molecular Interventions, 2(1), 22. [CrossRef] CR - 5. Guglieri, M., Clemens, P.R., Perlman, S.J., Smith, E.C., Horrocks, I., Finkel, R.S., Hoffman, E.P. (2022). Efficacy and safety of vamorolone vs placebo and prednisone among boys with Duchenne muscular dystrophy: a randomized clinical trial. JAMA Neurology, 79(10), 1005-1014. CR - 6. Sussman, M. (2002). Duchenne muscular dystrophy. Journal of the American Academy of Orthopaedic Surgeons, 10(2), 138-151. CR - 7. Emery, A.E., Emery, M.L. (2011). The History of a Genetic Disease: Duchenne Muscular Dystrophy or Meryon's Disease, Oxford University Press, Oxford, p.6-8. CR - 8. Bladen, C.L., Salgado, D., Monges, S., Foncuberta, M.E., Kekou, K., Kosma, K., Lochmüller, H. (2015). The TREAT‐NMD DMD global database: Analysis of more than 7,000 duchenne muscular dystrophy mutations. Human Mutation, 36(4), 395-402. [CrossRef] CR - 9. Min, Y.L., Bassel-Duby, R., Olson, E.N. (2019). CRISPR correction of duchenne muscular dystrophy. Annual Review of Medicine, 70(1), 239-255. [CrossRef] CR - 10. Chang, M., Cai, Y., Gao, Z., Chen, X., Liu, B., Zhang, C., Sun, H. (2023). Duchenne muscular dystrophy: Pathogenesis and promising therapies. Journal of Neurology, 270(8), 3733-3749. [CrossRef] CR - 11. Nowak, K.J., Davies, K.E. (2004). Duchenne muscular dystrophy and dystrophin: Pathogenesis and opportunities for treatment: Third in molecular medicine review series. EMBO Reports, 5(9), 872-876. [CrossRef] CR - 12. Babbs, A., Chatzopoulou, M., Edwards, B., Squire, S.E., Wilkinson, I.V., Wynne, G.M., Davies, K.E. (2020). From diagnosis to therapy in Duchenne muscular dystrophy. Biochemical Society Transactions, 48(3), 813-821. [CrossRef] CR - 13. Dubuisson, N., Versele, R., Planchon, C., Selvais, C.M., Noel, L., Abou-Samra, M., Davis-López de Carrizosa, M.A. (2022). Histological methods to assess skeletal muscle degeneration and regeneration in Duchenne muscular dystrophy. International Journal of Molecular Sciences, 23(24), 16080. [CrossRef] CR - 14. Deconinck, N., Dan, B. (2007). Pathophysiology of duchenne muscular dystrophy: Current hypotheses. Pediatric Neurology, 36(1), 1-7. [CrossRef] CR - 15. Larson, C.M., Henderson, R.C. (2000). Bone mineral density and fractures in boys with Duchenne muscular dystrophy. Journal of Pediatric Orthopaedics, 20(1), 71. CR - 16. Ma, J., McMillan, H.J., Karagüzel, G., Goodin, C., Wasson, J., Matzinger, M.A., Ward, L.M. (2017). The time to and determinants of first fractures in boys with Duchenne muscular dystrophy. Osteoporosis International, 28, 597-608. [CrossRef] CR - 17. Thanos, D., Maniatis, T. (1995). NF-κB: A lesson in family values. Cell, 80(4), 529-532. CR - 18. Zingarelli, B. (2005). Nuclear factor-κB. Critical Care Medicine, 33(12), S414-S416. [CrossRef] CR - 19. Barnes, P.J., Karin, M. (1997). Nuclear factor-κB-a pivotal transcription factor in chronic inflammatory diseases. New England Journal of Medicine, 336(15), 1066-1071. [CrossRef] CR - 20. Messina, S., Bitto, A., Aguennouz, M.H., Minutoli, L., Monici, M.C., Altavilla, D., Vita, G. (2006). Nuclear factor kappa-B blockade reduces skeletal muscle degeneration and enhances muscle function in Mdx mice. Experimental Neurology, 198(1), 234-241. [CrossRef] CR - 21. Oeckinghaus, A., Ghosh, S. (2009). The NF-κB family of transcription factors and its regulation. Cold Spring Harbor Perspectives in Biology, 1(4), a000034. [CrossRef] CR - 22. Gilmore, T.D. (2006). Introduction to NF-κB: Players, pathways, perspectives. Oncogene, 25(51), 6680-6684. [CrossRef] CR - 23. Yan, J., McCombe, P.A., Pender, M.P., Greer, J.M. (2020). Reduced IκB-α protein levels in peripheral blood cells of patients with multiple sclerosis-a possible cause of constitutive NF-κB activation. Journal of Clinical Medicine, 9(8), 2534. [CrossRef] CR - 24. Liu, T., Zhang, L., Joo, D., Sun, S.C. (2017). NF-κB signaling in inflammation. Signal Transduction and Targeted Therapy, 2(1), 1-9. [CrossRef] CR - 25. Kesika, P., Thangaleela, S., Sisubalan, N., Radha, A., Sivamaruthi, B.S., Chaiyasut, C. (2024). The role of the nuclear factor-kappa B (NF-κB) pathway in SARS-CoV-2 infection. Pathogens, 13(2), 164. [CrossRef] CR - 26. Sun, S.C. (2011). Non-canonical NF-κB signaling pathway. Cell Research, 21(1), 71-85. [CrossRef] CR - 27. Kumar, A., Takada, Y., Boriek, A.M., Aggarwal, B.B. (2004). Nuclear factor-κB: Its role in health and disease. Journal of Molecular Medicine, 82, 434-448. [CrossRef] CR - 28. Li, H., Malhotra, S., Kumar, A. (2008). Nuclear factor-kappa B signaling in skeletal muscle atrophy. Journal of Molecular Medicine, 86, 1113-1126. [CrossRef] CR - 29. Monici, M.C., Aguennouz, M., Mazzeo, A., Messina, C., Vita, G. (2003). Activation of nuclear factor-κB in inflammatory myopathies and Duchenne muscular dystrophy. Neurology, 60(6), 993-997. [CrossRef] CR - 30. Bonuccelli, G., Sotgia, F., Capozza, F., Gazzerro, E., Minetti, C., Lisanti, M.P. (2007). Localized treatment with a novel FDA-approved proteasome inhibitor blocks the degradation of dystrophin and dystrophin-associated proteins in mdx mice. Cell Cycle, 6(10), 1242-1248. [CrossRef] CR - 31. Sarkar, F.H., Li, Y., Wang, Z., Kong, D. (2008). NF-κB signaling pathway and its therapeutic implications in human diseases. International Reviews of Immunology, 27(5), 293-319. [CrossRef] CR - 32. Scheuren, N., Bang, H., Münster, T., Brune, K., Pahl, A. (1998). Modulation of transcription factor NF‐κB by enantiomers of the nonsteroidal drug ibuprofen. British Journal of Pharmacology, 123(4), 645-652. [CrossRef] CR - 33. Tegeder, I., Niederberger, E., Israr, E., Guhring, H., Brune, K., Euchenhofer, C., Geisslinger, G. (2001). Inhibition of NF-kappaB and AP-1 activation by R-and S-flurbiprofen. Faseb Journal, 15(1), 2-4. [CrossRef] CR - 34. Ryu, Y.S., Lee, J.H., Seok, J.H., Hong, J.H., Lee, Y.S., Lim, J.H., Hur, G.M. (2000). Acetaminophen inhibits iNOS gene expression in RAW 264.7 macrophages: Differential regulation of NF-κB by acetaminophen and salicylates. Biochemical and Biophysical Research Communications, 272(3), 758-764. [CrossRef] CR - 35. Wahl, C., Liptay, S., Adler, G., Schmid, R.M. (1998). Sulfasalazine: A potent and specific inhibitor of nuclear factor kappa B. The Journal of Clinical Investigation, 101(5), 1163-1174. [CrossRef] CR - 36. Yamamoto, Y., Yin, M.J., Lin, K.M., Gaynor, R.B. (1999). Sulindac inhibits activation of the NF-κB pathway. Journal of Biological Chemistry, 274(38), 27307-27314. [CrossRef] CR - 37. Kazmi, S.M., Plante, R.K., Visconti, V., Taylor, G.R., Zhou, L., Lau, C.Y. (1995). Suppression of NFκB activation and NFκB‐dependent gene expression by tepoxalin, a dual inhibitor of cyclooxygenase and 5‐lipoxygenase. Journal of Cellular Biochemistry, 57(2), 299-310. [CrossRef] CR - 38. Xu, X., Wang, J., Han, K., Li, S., Xu, F., Yang, Y. (2018). Antimalarial drug mefloquine inhibits nuclear factor kappa B signaling and induces apoptosis in colorectal cancer cells. Cancer Science, 109(4), 1220-1229. [CrossRef] CR - 39. Chitra, S., Nalini, G., Rajasekhar, G. (2012). The ubiquitin proteasome system and efficacy of proteasome inhibitors in diseases. International Journal of Rheumatic Diseases, 15(3), 249-260. [CrossRef] CR - 40. Liew, S.Y., Akker, S.A., Guasti, L., Pittaway, J.F. (2019). Glucocorticoid replacement therapies: Past, present and future. Current Opinion in Endocrine and Metabolic Research, 8, 152-159. [CrossRef] CR - 41. Rai, S., Faruqi, A., Singh, K.K., Kapoor, D., Jain, P., Ramakant, P., Mishra, A. (2022). Historical landmarks in the discovery of adrenal hormones. World, 14(1), 22. [CrossRef] CR - 42. Timmermans, S., Souffriau, J., Libert, C. (2019). A general introduction to glucocorticoid biology. Frontiers in Immunology, 10, 1545. [CrossRef] CR - 43. Burns, C.M. (2016). The history of cortisone discovery and development. Rheumatic Disease Clinics of North America, 42(1), 1-14. [CrossRef] CR - 44. Quattrocelli, M., Zelikovich, A.S., Salamone, I.M., Fischer, J.A., McNally, E.M. (2021). Mechanisms and clinical applications of glucocorticoid steroids in muscular dystrophy. Journal of Neuromuscular Diseases, 8(1), 39-52. [CrossRef] CR - 45. Reichardt, S.D., Amouret, A., Muzzi, C., Vettorazzi, S., Tuckermann, J.P., Lühder, F., Reichardt, H.M. (2021). The role of glucocorticoids in inflammatory diseases. Cells, 10(11), 2921. [CrossRef] CR - 46. Scherholz, M.L., Schlesinger, N., Androulakis, I.P. (2019). Chronopharmacology of glucocorticoids. Advanced Drug Delivery Reviews, 151, 245-261. [CrossRef] CR - 47. Gjerstad, J.K., Lightman, S.L., Spiga, F. (2018). Role of glucocorticoid negative feedback in the regulation of HPA axis pulsatility. Stress, 21(5), 403-416. [CrossRef] CR - 48. Stahn, C., Löwenberg, M., Hommes, D.W., Buttgereit, F. (2007). Molecular mechanisms of glucocorticoid action and selective glucocorticoid receptor agonists. Molecular and Cellular Endocrinology, 275(1-2), 71-78. [CrossRef] CR - 49. Katzung, B.G. (2018). Adrenocorticosteroids & Adrenocortical Antagonists. In: B.G. Katzung (Ed.), Basic & Clinical Pharmacology (pp. 703-719). New York: McGraw-Hill Education. CR - 50. Wissink, S., Van Heerde, E.C., Van der Burg, B., Van der Saag, P.T. (1998). A dual mechanism mediates repression of NF-κB activity by glucocorticoids. Molecular Endocrinology, 12(3), 355-363. [CrossRef] CR - 51. Barnes, P.J. (1997). Nuclear factor-κB. The International Journal of Biochemistry & Cell Biology, 29(6), 867-870. [CrossRef] CR - 52. Liu, G., Lipari, P., Mollin, A., Jung, S., Teplova, I., Li, W., Weetall, M. (2024). Comparison of pharmaceutical properties and biological activities of prednisolone, deflazacort, and vamorolone in DMD disease models. Human Molecular Genetics, 33(3), 211-223. [CrossRef] CR - 53. McGowan, B., Kuntz, N.L. (2023). Updates in the use of vamorolone and steroids in the treatment of duchenne muscular dystrophy. Touchreviews In Neurology, 19(2). [CrossRef] CR - 54. FDA Web site. (2023). Novel drug approvals for 2023. Retrieved November 26, 2023, from https://www.fda.gov/drugs/novel-drug-approvals-fda/novel-drug-approvals-2023. Accessed date: 26.11.2023. CR - 55. Keam, S.J. (2024). Vamorolone: first approval. Drugs, 84(1), 111-117. [CrossRef] CR - 56. Elhalag, R.H., Motawea, K.R., Talat, N.E., Rouzan, S.S., Shah, J. (2023). Efficacy of vamorolone in treatment of Duchene muscle dystrophy. A meta-analysis. Frontiers in Neurology, 14, 1107474. [CrossRef] CR - 57. Smith, E.C., Conklin, L.S., Hoffman, E.P., Clemens, P.R., Mah, J.K., Finkel, R.S., Guglieri, M., Tulinius, M., Nevo, Y., Ryan, M.M., Webster, R., Castro, D., Kuntz, N.L., Kerchner, L., Morgenroth, L.P., Arrieta, A., Shimony M., Jaros, M., Shale, P., Gordish-Dressman, H., Hagerty, L., Dang, U.J., Damsker, J.M., Schwartz, B.D., Mengle-Gaw, L.J., McDonald, C.M., CINRG VBP15 and DNHS Investigators. (2020). Efficacy and safety of vamorolone in duchenne muscular dystrophy: An 18-month interim analysis of a non-randomized open-label extension study. PLoS Medicine, 17(9), e1003222. [CrossRef] CR - 58. Mukhtar, S., Haris, M. (2024). Vamorolone: Revolutionizing duchenne muscular dystrophy treatment. International Journal, 10(5), 1. [CrossRef] CR - 59. Hoffman, E.P., Schwartz, B.D., Mengle-Gaw, L.J., Smith, E.C., Castro, D., Mah, J.K., McDonald,C.M., Kuntz, N.L., Finkel, R.S., Guglieri, M., Bushby, K., Tulinius, M., Nevo, Y., Ryan, M.M., Webster, R., Smith, A.L., Morgenroth, L.P., Arrieta, A., Shimony, M., Siener, C., Jaros, M., Shale, P., McCall, J.M., Nagaraju, K., Anker, J.V.D., Conklin, L.S., Cnaan, A., Gordish-Dressman, H., Damsker, J.M., Clemens, P.R., the Cooperative International Neuromuscular Research Group. (2019). Vamorolone trial in duchenne muscular dystrophy shows dose-related improvement of muscle function. Neurology, 93(13), e1312-e1323. [CrossRef] CR - 60. Van Raalte, D.H., Diamant, M. (2014). Steroid diabetes: From mechanism to treatment. The Netherlands Journal of Medicine, 72(2), 62-72. CR - 61. AGAMREE Web site. (2024). AGAMREE® (vamorolone) for consumers | treatment for DMD. Retrieved October 2, 2024, from https://agamree.com/. Accessed date: 02.10.2024. UR - https://doi.org/10.33483/jfpau.1601594 L1 - https://dergipark.org.tr/en/download/article-file/4440984 ER -