TY - JOUR T1 - On a variety of Lie-admissible algebras AU - Facchini, Alberto PY - 2025 DA - January Y2 - 2024 DO - 10.24330/ieja.1607238 JF - International Electronic Journal of Algebra JO - IEJA PB - Abdullah HARMANCI WT - DergiPark SN - 1306-6048 SP - 1 EP - 13 VL - 37 IS - 37 LA - en AB - The aim of this paper is to propose the study of a class of Lie-admissible algebras. It is the class (variety) of all the (not-necessarily associative) algebras $M$ over a commutative ring $k$ with identity $1_k$ for which $(x,y,z)=(y,x,z)+(z,y,x)$ for every $x,y,z\in M$. Here $(x,y,z)$ denotes the associator of $M$. We call such algebras algebras of type $\mathcal{V}_2$. Very little is known about these algebras. KW - Lie-admissible algebra KW - pre-Lie algebra KW - $~$ CR - A. A. Albert, Power-associative rings, Trans. Amer. Math. Soc., 64 (1948), 552-593. CR - M. Cerqua and A. Facchini, Pre-Lie algebras, their multiplicative lattice, and idempotent endomorphisms, in ``Functor categories, model theory, algebraic analysis and constructive methods'', A. Martsinkovski Ed., Springer Proc. Math. Stat., Springer, Cham, 450 (2024), 23-44. CR - F. A. F. Ebrahim and A. Facchini, Idempotent pre-endomorphisms of algebras, Comm. Algebra, 52(2) (2024), 514-527. CR - M. Goze and E. Remm, Lie-admissible algebras and operads, J. Algebra, 273(1) (2004), 129-152. CR - N. Ismailov and U. Umirbaev, On a variety of right-symmetric algebras, J. Algebra, 658 (2024), 759-778. CR - P. J. Laufer and M. L. Tomber, Some Lie admissible algebras, Canadian J. Math., 14 (1962), 287-292. CR - J. M. Osborn, Modules over nonassociative rings, Comm. Algebra, 6(13) (1978), 1297-1358. CR - K. A. Zhevlakov, A. M. Slin'ko, I. P. Shestakov and A. I. Shirshov, Rings That Are Nearly Associative, translated from the Russian by H. F. Smith, Pure and Applied Math., 104, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1982. UR - https://doi.org/10.24330/ieja.1607238 L1 - https://dergipark.org.tr/en/download/article-file/4466752 ER -