TY - JOUR T1 - Drone Classification with a Hybrid Deep Learning Approach Based on Mel-Spectrogram Representation TT - Mel-Spektrogram Temsiline Dayalı Hibrit Derin Öğrenme Yaklaşımı ile Drone Sınıflandırması AU - Kılıç, Rabiye AU - Kumbasar, Nida AU - Oral, Emin Argun AU - Özbek, Yücel PY - 2025 DA - August Y2 - 2025 DO - 10.53433/yyufbed.1609294 JF - Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi JO - YYU JINAS PB - Van Yuzuncu Yıl University WT - DergiPark SN - 1300-5413 SP - 608 EP - 620 VL - 30 IS - 2 LA - en AB - With technological advancements, the use of drones has become increasingly widespread in both civilian and military sectors in recent years. There is a need for technologies that can detect and identify the presence, type, or flight mode of a drone with remote sensing signals in situations that pose a security threat. This study is based on the classification of radio frequency (RF) signals from various drones under different flight modes using Mel-spectrogram representations. Within the scope of the study, the VGG19 deep learning model is used as both a classifier and a feature extractor for the SVM classifier. On the other hand, the study compares the performance of RF signals in low and high frequency bands separately and in concatenated versions. In the results obtained in the experimental studies, the VGG19+SVM hybrid model showed the highest performance over the Mel-spectrogram of the concatenated low and high (L+H) frequencies. The accuracy performances were 100% in the 2-Class problem where drone presence was detected (drone -no drone), 90.78% in the 4-Class problem where drone types were classification (Bebop-AR-Phantom-no drone), and 86.6% in the 10-Class problem where drone modes were obtained. KW - Drone classification KW - Hybrid model KW - Mel-spectrogram KW - RF signal N2 - Teknolojik gelişmelerle birlikte son yıllarda hem sivil hem de askeri sektörde dron kullanımı giderek yaygınlaşmaktadır. Güvenlik tehdidi oluşturan durumlarda uzaktan algılama sinyalleriyle bir dronun varlığını, türünü veya uçuş modunu tespit edip tanımlayabilen teknolojilere ihtiyaç duyulmaktadır. Bu çalışma, Mel-spektrogram gösterimleri kullanılarak farklı uçuş modları altında çeşitli dronlardan gelen radyo frekans (RF) sinyallerinin sınıflandırılmasına dayanmaktadır. Çalışma kapsamında, VGG19 derin öğrenme modeli hem bir sınıflandırıcı hem de SVM sınıflandırıcısı için bir özellik çıkarıcı olarak kullanılmıştır. Öte yandan çalışma, RF sinyallerinin düşük ve yüksek frekans bantlarındaki performansını ayrı ayrı ve birleştirilmiş versiyonlarda karşılaştırmaktadır. Deneysel çalışmalarda elde edilen sonuçlarda, VGG19+SVM hibrit modeli, birleştirilmiş düşük ve yüksek (L+H) frekansların Mel-spektrogramı üzerinde en yüksek performansı göstermiştir. dron varlığının tespit edildiği 2-Sınıf problemde (dron var - dron yok) doğruluk performansları %100, dron tiplerinin sınıflandırıldığı 4-Sınıf problemde (Bebop-AR-Phantom-dron yok) %90.78 ve dron modlarının elde edildiği 10-Sınıf problemde ise %86.6 olarak gerçekleşmiştir. CR - Alam, S. S., Chakma, A., Rahman, M. H., Bin Mofidul, R., Alam, M. M., Utama, I. B. K. Y., & Jang, Y. M. (2023). RF-enabled deep-learning-assisted drone detection and identification: An end-to-end approach. Sensors, 23(9), 4202. https://doi.org/10.3390/s23094202 CR - Al-Emadi, S., Al-Ali, A., & Al-Ali, A. (2021). Audio-based drone detection and identification using deep learning techniques with dataset enhancement through generative adversarial networks. Sensors, 21(15), 4953. https://doi.org/10.3390/s21154953 CR - Al-Emadi, S., & Al-Senaid, F. (2020). Drone detection approach based on radio-frequency using convolutional neural network. 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT), 29–34. https://doi.org/10.1109/iciot48696.2020.9089489 CR - Allahham, M. S., Al-Sa’d, M. F., Al-Ali, A., Mohamed, A., Khattab, T., & Erbad, A. (2019). DroneRF dataset: A dataset of drones for RF-based detection, classification and identification. Data in Brief, 26, 104313. https://doi.org/10.1016/j.dib.2019.104313 CR - Al-Sa’d, M. F., Al-Ali, A., Mohamed, A., Khattab, T., & Erbad, A. (2019). RF-based drone detection and identification using deep learning approaches: An initiative towards a large open source drone database. Future Generation Computer Systems, 100, 86–97. https://doi.org/10.1016/j.future.2019.05.007 CR - Anwar, M. Z., Kaleem, Z., & Jamalipour, A. (2019). Machine learning inspired sound-based amateur drone detection for public safety applications. IEEE Transactions on Vehicular Technology, 68(3), 2526–2534. https://doi.org/10.1109/tvt.2019.2893615 CR - Aydin, B., & Singha, S. (2023). Drone detection using YOLOv5. Engineering, 4(1), 416–433. https://doi.org/10.3390/eng4010025 CR - Basak, S., Rajendran, S., Pollin, S., & Scheers, B. (2021). Drone classification from RF fingerprints using deep residual nets. 2021 International Conference on COMmunication Systems & NETworkS (COMSNETS), 548–555. https://doi.org/10.1109/comsnets51098.2021.9352891 CR - Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273–297. https://doi.org/10.1007/BF00994018 CR - Ezuma, M., Erden, F., Anjinappa, C. K., Ozdemir, O., & Guvenc, I. (2019). Detection and classification of UAVs using RF fingerprints in the presence of Wi-Fi and Bluetooth interference. IEEE Open Journal of the Communications Society, 1, 60–76. https://doi.org/10.1109/ojcoms.2019.2955889 CR - Kılıç, R., Kumbasar, N., Oral, E. A., & Ozbek, I. Y. (2022). Drone classification using RF signal based spectral features. Engineering Science and Technology, an International Journal, 28, 101028. https://doi.org/10.1016/j.jestch.2021.06.008 CR - Kumbasar, N., Kılıç, R., Oral, E. A., & Ozbek, I. Y. (2022). Comparison of spectrogram, persistence spectrum and percentile spectrum based image representation performances in drone detection and classification using novel HMFFNet: Hybrid model with feature fusion network. Expert Systems with Applications, 206, 117654. https://doi.org/10.1016/j.eswa.2022.117654 CR - Mandal, S., & Satija, U. (2023). Time–frequency multiscale convolutional neural network for RF-based drone detection and identification. IEEE Sensors Letters, 7(7), 1–4. https://doi.org/10.1109/lsens.2023.3289145 CR - Medaiyese, O. O., Ezuma, M., Lauf, A. P., & Guvenc, I. (2022). Wavelet transform analytics for RF-based UAV detection and identification system using machine learning. Pervasive and Mobile Computing, 82, 101569. https://doi.org/10.1016/j.pmcj.2022.101569 CR - Medaiyese, O. O., Syed, A., & Lauf, A. P. (2021). Machine learning framework for RF-based drone detection and identification system. 2021 2nd International Conference On Smart Cities, Automation & Intelligent Computing Systems (ICON-SONICS), 58–64. https://doi.org/10.1109/icon-sonics53103.2021.9617168 CR - Mohammed, K. K., Abd El-Latif, E. I., El-Sayad, N. E., Darwish, A., & Hassanien, A. E. (2023). Radio frequency fingerprint-based drone identification and classification using Mel spectrograms and pre-trained YAMNet neural. Internet of Things, 23, 100879. https://doi.org/10.1016/j.iot.2023.100879 CR - Narayanan, R. M., Tsang, B., & Bharadwaj, R. (2023). Classification and discrimination of birds and small drones using radar micro-doppler spectrogram images. Signals, 4(2), 337–358. https://doi.org/10.3390/signals4020018 CR - Seidaliyeva, U., Ilipbayeva, L., Taissariyeva, K., Smailov, N., & Matson, E. T. (2023). Advances and challenges in drone detection and classification techniques: A state-of-the-art review. Sensors, 24(1), 125. https://doi.org/10.3390/s24010125 CR - Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 CR - Singha, S., & Aydin, B. (2021). Automated drone detection using YOLOv4. Drones, 5(3), 95. https://doi.org/10.3390/drones5030095 CR - Taha, B., & Shoufan, A. (2019). Machine learning-based drone detection and classification: State-of-the-art in research. IEEE Access, 7, 138669–138682. https://doi.org/10.1109/access.2019.2942944 CR - Utebayeva, D., Ilipbayeva, L., & Matson, E. T. (2023). Practical study of recurrent neural networks for efficient real-time drone sound detection: A review. Drones, 7(1), 26. https://doi.org/10.3390/drones7010026 CR - Yan, J., Hu, H., Gong, J., Kong, D., & Li, D. (2023a). Exploring radar micro-doppler signatures for recognition of drone types. Drones, 7(4), 280. https://doi.org/10.3390/drones7040280 CR - Yan, X., Han, B., Su, Z., & Hao, J. (2023b). SignalFormer: Hybrid transformer for automatic drone ıdentification based on drone RF signals. Sensors, 23(22), 9098. https://doi.org/10.3390/s23229098 CR - Yousaf, J., Zia, H., Alhalabi, M., Yaghi, M., Basmaji, T., Shehhi, E. A., Gad, A., Alkhedher, M., & Ghazal, M. (2022). Drone and controller detection and localization: Trends and challenges. Applied Sciences, 12(24), 12612. https://doi.org/10.3390/app122412612 CR - Zhang, H., Li, T., Li, Y., Li, J., Dobre, O. A., & Wen, Z. (2023). RF-based drone classification under complex electromagnetic environments using deep learning. IEEE Sensors Journal, 23(6), 6099–6108. https://doi.org/10.1109/jsen.2023.3242985 CR - Zhao, J., Zhang, J., Li, D., & Wang, D. (2022). Vision-based anti-UAV detection and tracking. IEEE Transactions on Intelligent Transportation Systems, 23(12), 25323–25334. https://doi.org/10.1109/tits.2022.3177627 UR - https://doi.org/10.53433/yyufbed.1609294 L1 - https://dergipark.org.tr/en/download/article-file/4475934 ER -