TY - JOUR T1 - Ortaokul Öğrencileri İçin Yapay Zekâ Farkındalık ve Kullanım Eğilimleri Ölçeği: Geliştirme, Geçerlik ve Güvenirlik Çalışması TT - Scale of Artificial Intelligence Awareness and Usage Tendencies for Middle School Students: Development, Validity, and Reliability Study AU - Zengin, Ramazan AU - Yaman, Yavuz AU - Kahraman, Süleyman PY - 2025 DA - June Y2 - 2025 DO - 10.53444/deubefd.1611893 JF - Dokuz Eylül Üniversitesi Buca Eğitim Fakültesi Dergisi JO - DEU BEF Dergi PB - Dokuz Eylul University WT - DergiPark SN - 2602-2850 SP - 2451 EP - 2475 IS - 64 LA - tr AB - Bu çalışma, ortaokul öğrencilerinin yapay zekâ (YZ) farkındalığı ve kullanım eğilimlerini ölçmek amacıyla dört boyutlu bir ölçek geliştirmeyi amaçlamaktadır. Ortaokul Yapay Zekâ Farkındalık ve Kullanım Eğilimleri Ölçeği (YZFKÖ), YZ Temel Bilgi, YZ Kullanım Alanları, YZ Kaygı ve YZ Zorlanma olmak üzere dört boyuttan oluşmaktadır.Ölçeğin geliştirme sürecinde literatür taraması, uzman görüşleri, pilot uygulama, Açıklayıcı Faktör Analizi (AFA) ve Doğrulayıcı Faktör Analizi (DFA) gerçekleştirilmiştir. AFA ve DFA sonuçları, dört faktörlü yapının toplam varyansın %52,05'ini açıkladığını ve uyum iyiliği indekslerinin kabul edilebilir düzeyde olduğunu göstermiştir (KMO = ,924; χ²/df = 2,057; CFI = ,935; RMSEA = ,043).Cronbach Alfa katsayısı tüm ölçek için α = ,870 olarak belirlenmiş, alt boyutlar için ise α değerlerinin ,743 ile ,914 arasında değiştiği görülmüştür. Bu bulgular, ölçeğin geçerli, güvenilir ve tutarlı bir ölçüm aracı olduğunu ortaya koymaktadır.Bu çalışmada geliştirilen ölçek, öğretmenler, eğitim programı geliştiricileri ve eğitim politikacıları için öğrencilerin YZ farkındalık ve kullanım eğilimlerini ölçmede geçerli ve güvenilir bir araç sunmaktadır.Anahtar Kelimeler: Yapay zekâ farkındalığı, Yapay zekâ kullanım eğilimleri, Ortaokul, Ölçek geliştirme, Eğitimde yapay zekâ KW - Yapay zekâ farkındalığı KW - Yapay zekâ kullanım eğilimleri KW - Ölçek geliştirme N2 - This study aimed to develop a four-dimensional scale to measure middle school students' awareness of and tendencies toward artificial intelligence (AI). The Middle School Artificial Intelligence Awareness and Usage Tendency Scale (YZFKÖ) consists of four dimensions: Basic AI Knowledge, AI Usage Areas, AI Anxiety, and AI Challenges.The study was conducted using literature review, expert opinions, pilot application, Exploratory Factor Analysis (EFA), and Confirmatory Factor Analysis (CFA). The EFA and CFA results revealed that the four-factor structure explained 52.05% of the total variance and that the goodness-of-fit indices were at an acceptable level (KMO = .924; χ²/df = 2.057; CFI = .935; RMSEA = .043).The Cronbach Alpha coefficient was determined as α = .870 for the entire scale, and the sub-dimensions ranged between α = .743 and α = .914. These findings indicate that the scale is a valid, reliable, and consistent measurement tool.The developed scale provides teachers, curriculum developers, and education policymakers with a valid and reliable tool for measuring students' levels of AI awareness and usage tendencies. CR - Aldosari, S. A. (2020). The future of higher education in the light of artificial intelligence transformations. International Journal of Higher Education, 9(3), Article 145. https://doi.org/10.5430/ijhe.v9n3p145 CR - Boateng, G. O., Neilands, T. B., Frongillo, E. A., Melgar-Quiñonez, H. R., & Young, S. L. (2018). Best practices for developing and validating scales for health, social, and behavioral research: A primer. Frontiers in Public Health, 6, 149, https://doi.org/10.3389/fpubh.2018.00149 CR - Brown, T. A. (2015). Confirmatory factor analysis for applied research, Second Edition. Guilford Publications. Buchanan, B. G., & Sandham, J. (2022). AI is changing the world. Science, 375(6586), 1190-1193. CR - Büyüköztürk, Ş. (2018). Sosyal bilimler için veri analizi el kitabı. Ankara: Pegem Akademi CR - Calvani, A., Cartelli, A., Fini, A., & Ranieri, M. (2008). Models and instruments for assessing digital competence at school. Journal of E-learning and Knowledge Society, 4(3), 183-193. CR - Carolus, A., Koch, M. J., Straka, S., Latoschik, M. E., & Wienrich, C. (2023). MAILS – Meta AI Literacy Scale: Development and testing of an AI literacy questionnaire based on well-founded competency models and psychological change- and meta-competencies. Computers in Human Behavior: Artificial Humans, 1(2), 100014. https://doi.org/10.1016/j.chbah.2023.100014 CR - Carpenter, S. (2017). Ten steps in scale development and reporting: A Guide for Researchers. Communication Methods and Measures, 12(1), 25–44. https://doi.org/10.1080/19312458.2017.1396583 CR - Çayır, A. (2023). A Literature Review on the Effect of Artificial Intelligence on Education. İnsan ve Sosyal Bilimler Dergisi, 6(2), 276–288. https://doi.org/10.53048/johass.1375684 CR - Çelebi, C., Yılmaz, F., Demir, U., & Karakuş, F. (2023). Artificial Intelligence Literacy: An Adaptation Study. Instructional Technology and Lifelong Learning, 4(2), 291-306. https://doi.org/10.52911/itall.1401740 CR - Cetindamar, D., Kitto, K., Wu, M., Zhang, Y., Abedin, B., & Knight, S. (2024). Explicating AI Literacy of Employees at Digital Workplaces. IEEE Transactions on Engineering Management, 71, 810–823. https://doi.org/10.1109/tem.2021.3138503 CR - Chetty, K., Ntshayintshayi, N., Tlou, A., Saal, P., Moosa, T., Mgebisa, L., ... & Mdlulwa, N. (2023). AI skills development roadshow with the African Leadership University. CR - Chiu, T. K. F., Chai, C. S., & Tan, C. M. (2021). AI literacy: Definitions and design considerations. Computers & Education: Artificial Intelligence, 2, 100017. https://doi.org/10.1016/j.caeai.2021.100017 CR - Cohen, L., Manion, L., & Morrison, K. (2018). Research methods in education (8th ed.). Routledge. CR - Costello, A. B. & Osborne, J., (2005) “Best practices in exploratory factor analysis: four recommendations for getting the most from your analysis”, Practical Assessment, Research, and Evaluation 10(1): 7. doi: https://doi.org/10.7275/jyj1-4868 CR - Cuomo, S., Biagini, G., & Ranieri, M. (2022). Artificial intelligence literacy, che cos’è e come promuoverla: Dall’analisi della letteratura ad una proposta di framework. Media Education, 13(2), 161–172, https://doi.org/10.36253/me-13374 Çakır, F. S. (2018). YAPAY SİNİR AĞLARI-Matlab Kodları ve Matlab Toolbox Çözümleri. Nobel Akademik Yayıncılık. CR - DeVellis, R. F. (2017). Scale development: Theory and applications (4th ed.). Thousand Oaks, CA: SAGE. CR - Floridi, L. (2019). What the near future of artificial intelligence could be. Ethics, Governance, and Policies in Artificial Intelligence, 379-394, https://doi.org/10.1007/s13347-019-00345-y CR - Gibson, D., Kovanovic, V., Ifenthaler, D., Dexter, S., & Feng, S. (2023). Learning theories for artificial intelligence promoting learning processes. British Journal of Educational Technology, 54(5), 1125–1146. https://doi.org/10.1111/bjet.13341. CR - Grassini, S. (2023). Development and validation of the AI attitude scale (AIAS- 4): A brief measure of general attitude toward artificial intelligence. Front. Psychol. 14:1191628. doi: 10.3389/fpsyg.2023.1191628 CR - Haenlein, M., & Kaplan, A. (2019). A brief history of artificial intelligence: On the past, present, and future of artificial intelligence. California Management Review, 61(4), 5–14. https://doi.org/10.1177/0008125619864925 CR - Hair, J., Anderson, R., Black, B., & Babin, B. (2016). Multivariate data analysis. Pearson Higher Ed. CR - Hertzog M. A. (2008). Considerations in determining sample size for pilot studies. Research in nursing & health, 31(2), 180–191. https://doi.org/10.1002/nur.20247 CR - Holmes, W., Bialik, M., & Fadel, C. (2019). Artificial Intelligence in Education: Promises and Implications for Teaching and Learning. Center for Curriculum Redesign. CR - Hrastinski, S. (2019). What do we mean by blended learning? TechTrends, 63(5), 564–569. https://doi.org/10.1007/s11528-019-00375-5 CR - Huang, J., Saleh, S., & Liu, Y. (2021). A review on artificial intelligence in education. Academic Journal of Interdisciplinary Studies, 10(3), 206. https://doi.org/10.36941/ajis-2021-0077 CR - Kasinidou, M. (2023, March). Promoting AI literacy for the public. In Proceedings of the 54th ACM Technical Symposium on Computer Science Education (Vol. 2, p. 1237). ACM. https://doi.org/10.1145/3545947.3573292 CR - Kline, R. B. (2023). Principles and Practice of Structural Equation Modeling, Fourth edition. Guilford Publications. CR - Kong, S. C., Lai, M., Sun, D., Luo, H., & Wong, K. H. (2021). Development and validation of an AI literacy scale for university students. International Journal of Artificial Intelligence in Education, 31(4), 725–747. https://doi.org/10.1007/s40593-021-00251-7 CR - Kyriazos, T. (2018) Applied Psychometrics: Sample Size and Sample Power Considerations in Factor Analysis (EFA, CFA) and SEM in General. Psychology, 9, 2207-2230. https://doi.org/10.4236/psych.2018.98126. CR - Laupichler, M. C., Aster, A., & Raupach, T. (2023). Delphi study for the development and preliminary validation of an item set for the assessment of non-experts' AI literacy. Computers and Education: Artificial Intelligence, 4, 100126. https://doi.org/10.1016/j.caeai.2023.100126 CR - Long, D., & Magerko, B. (2020). What is AI literacy? Competencies and design considerations. Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, 1–16. https://doi.org/10.1145/3313831.3376727 CR - Luckin, R. and Cukurova, M. (2019). Designing educational technologies in the age of ai: a learning sciences‐driven approach. British Journal of Educational Technology, 50(6), 2824-2838. https://doi.org/10.1111/bjet.12861 CR - Makridakis, S. (2017). The forthcoming artificial intelligence (AI) revolution: Its impact on society and firms. Futures, 90, 46–60. https://doi.org/10.1016/j.futures.2017.03.006 CR - Moodi Ghalibaf, A., Moghadasin, M., Emadzadeh, A., & Mastour, H. (2023). Psychometric properties of the persian version of the Medical Artificial Intelligence Readiness Scale for Medical Students (MAIRS-MS). BMC Medical Education, 23(1). https://doi.org/10.1186/s12909-023-04553-1 CR - Ng, D. T. K., Leung, J. K. L., Chu, S. K. W., & Qiao, M. S. (2021). Conceptualizing AI literacy: An exploratory review. Computers and Education: Artificial Intelligence, 2, 100041. https://doi.org/10.1016/j.caeai.2021.100041 CR - Ng, D., Wu, W., Leung, J. K. L., Chiu, T. K. F., & Chu, S. K. W. (2023). Design and validation of the AI literacy questionnaire: The affective, behavioural, cognitive and ethical approach. British Journal of Educational Technology, 55(3), 1082–1104. https://doi.org/10.1111/bjet.13411 CR - Organisation for Economic Co-operation and Development. (2024). Artificial intelligence in education: A guide for policymakers. Paris: OECD Publishing. CR - Pala, Ş. M., & Başıbüyük, A. (2020). 10-12 yaş grubu öğrencileri için dijital okuryazarlık ölçeği geliştirme çalışması. Akdeniz Eğitim Araştırmaları Dergisi, 14(33), 542–565. https://doi.org/10.29329/mjer.2020.272.25 CR - Pinski, M., & Benlian, A. (2023). AI literacy—Towards measuring human competency in artificial intelligence. In T. X. Bui (Ed.), Proceedings of the 56th Hawaii International Conference on System Sciences (pp. 165–174). ScholarSpace. CR - Pişkin, M., Atik, G., Çınkır, Ş., Öğülmüş, S., Babadoğan, C., & Çokluk, Ö. (2014). The development and validation of the Teacher Violence Scale. Eurasian Journal of Educational Research, 56(56), 69–88. https://doi.org/10.14689/ejer.2014.56.3 CR - Polit, D. F., & Beck, C. T. (2006). The content validity index: Are you sure you know what’s being reported? Critique and recommendations. Research in Nursing & Health, 29(5), 489–497. https://doi.org/10.1002/nur.20147 CR - Rakuasa, H. (2023). Integration of artificial intelligence in geography learning: challenges and opportunities. CR - Sinergi International Journal of Education, 1(2), 75-83. https://doi.org/10.61194/education.v1i2.71 CR - Raykov, T., & Hancock, G. R. (2005). Examining change in maximal reliability for multiple‐component measuring instruments. British Journal of Mathematical and Statistical Psychology, 58(1), 65–82. https://doi.org/10.1348/000711005x38753 CR - Richter, S., Giroux, M., Piven, I., Sima, H., & Dodd, P. (2024). A Constructivist Approach to Integrating AI in Marketing Education: Bridging Theory and Practice. Journal of Marketing Education, 0(0). https://doi.org/10.1177/02734753241288876 CR - Rodríguez-García, Á. M., Moreno-León, J., Román-González, M., & Robles, G. (2021). Introducing artificial intelligence in computer science classrooms: An experience report. Informatics, 8(3), 54. CR - Roshanaei, M., Olivares, H., & Lopez, R. R. (2023). Harnessing AI to foster equity in education: opportunities, challenges, and emerging strategies. Journal of Intelligent Learning Systems and Applications, 15(04), 123-143. https://doi.org/10.4236/jilsa.2023.154009 CR - Russell, S. J., & Norvig, P. (2010). Artificial intelligence: A modern approach (3rd ed.). Prentice Hall. CR - Rütti-Joy, O., Winder, G., & Biedermann, H. (2023). Building AI literacy for sustainable teacher education. Zeitschrift für Hochschulentwicklung, 18(4), 175–189. https://doi.org/10.21240/zfhe/18-04/10 CR - Schepman, A., & Rodway, P. (2020). Initial validation of the General Attitudes towards Artificial Intelligence Scale. Computers in Human Behavior Reports, 1, 100014. https://doi.org/10.1016/j.chbr.2020.100014 CR - Schermelleh-Engel, K., Moosbrugger, H., & Müller, H. (2003). Evaluating the Fit of Structural Equation Models: Tests of Significance and Descriptive Goodness-of-Fit Measures. Methods of Psychological Research, 8(2), 23–74. CR - Sellbom, M., & Tellegen, A. (2019). Factor analysis in psychological assessment research: Common pitfalls and recommendations. Psychological assessment, 31(12), 1428–1441. https://doi.org/10.1037/pas0000623 CR - Selwyn, N. (2019). Should robots replace teachers? AI and the future of education. Polity Press. CR - Sindermann, C., Sha, P., Zhou, M., Wernicke, J., Schmitt, H. S., Li, M., Sariyska, R., Stavrou, M., Becker, B., & Montag, C. (2021). Assessing the Attitude Towards Artificial Intelligence: Introduction of a Short Measure in German, Chinese, and English Language. KI - Künstliche Intelligenz, 35(1), 109–118. https://doi.org/10.1007/s13218-020-00689-0 CR - Stevens, J. (2002). Applied Multivariate Statistics for the Social Sciences. Psychology Press. CR - Stöhr, C., Ou, A. W., & Malmström, H. (2024). Perceptions and usage of AI chatbots among students in higher education across genders, academic levels, and fields of study. Computers and Education: Artificial Intelligence, 7, 100259. https://doi.org/10.1016/j.caeai.2024.100259 CR - Tabachnick, B. G., & Fidell, L. S. (2013). Using multivariate statistics (6th ed.). Pearson. CR - Touretzky, D., Gardner-McCune, C., Martin, F., & Seehorn, D. (2019). Envisioning AI for K-12: What should every child know about AI? Proceedings of the AAAI Conference on Artificial Intelligence, 33(1), 9795–9799. https://doi.org/10.1609/aaai.v33i01.33019795 CR - UNESCO. (2019). Artificial intelligence in education: Challenges and opportunities for sustainable development. UNESCO Publishing. CR - Wang, B., Rau, P. L. P., & Yuan, T. (2023). Measuring user competence in using artificial intelligence: Validity and reliability of artificial intelligence literacy scale. Behaviour & Information Technology, 42(9), 1324–1337. https://doi.org/10.1080/0144929X.2022.2072768 CR - Wang, S., Wang, F., Zhu, Z., Wang, J., Tran, T., & Du, Z. (2024). Artificial intelligence in education: A systematic literature review. Expert Syst. Appl., 252, 124167. https://doi.org/10.1016/j.eswa.2024.124167 CR - Wang, Y.-Y., & Chuang, Y.-W. (2024). Artificial intelligence self-efficacy: Scale development and validation. Education and Information Technologies, 29(4), 4785–4808. https://doi.org/10.1007/s10639-023-12015-w CR - Wang, Y.-Y., & Wang, Y.-S. (2022). Development and validation of an artificial intelligence anxiety scale: An initial application in predicting motivated learning behavior. Interactive Learning Environments, 30(4), 619–634. https://doi.org/10.1080/10494820.2019.1674887 CR - Worthington, R. L., & Whittaker, T. A. (2006). Scale Development Research: A Content Analysis and Recommendations for Best Practices. The Counseling Psychologist, 34(6), 806–838. https://doi.org/10.1177/0011000006288127 CR - Xing, C. (2023). Research on the application of artificial intelligence empowered education management. Journal of Artificial Intelligence Practice, 6(6), 13–17. https://doi.org/10.23977/jaip.2023.060602 Yadav, A., Hong, H., & Stephenson, C. (2016). Computational Thinking for All: Pedagogical approaches to embedding 21st century problem solving in K-12 classrooms. TechTrends, 60(6), 565–568. https://doi.org/10.1007/s11528-016-0087-7 CR - Yang, Y., & Xu, X. (2024). Research on artificial intelligence literacy level and its influencing factors of high school students. International Journal of Social Science and Research. https://doi.org/10.58531/ijssr/2/2/1 CR - Zhao, G., Li, Y., & Xu, Q. (2022). From emotion AI to cognitive AI. International Journal of Network Dynamics and Intelligence, 1(1), 65–72. https://doi.org/10.53941/ijndi0101006 CR - Zhou, X., Van Brummelen, J., & Lin, P. (2020). Designing AI Learning Experiences for K-12: Emerging Works, Future Opportunities and a Design Framework (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2009.10228 UR - https://doi.org/10.53444/deubefd.1611893 L1 - https://dergipark.org.tr/en/download/article-file/4486598 ER -