TY - JOUR T1 - A randomized controlled trial to evaluate genotyping and therapeutic drug monitoring vs. only therapeutic drug monitoring as a strategy for risk minimization in epileptic patients on carbamazepine therapy AU - Belhekar, Mahesh AU - A, Vinayak AU - More, Swati AU - Ambre, Sanchita AU - Khimsuriya, Hina PY - 2025 DA - April Y2 - 2025 DO - 10.62425/rtpharma.1614127 JF - Recent Trends in Pharmacology JO - Recent Trends in Pharmacology PB - Ataturk University WT - DergiPark SN - 2980-194X SP - 27 EP - 35 VL - 3 IS - 1 LA - en AB - Objective: Carbamazepine (CBZ) is a widely prescribed antiepileptic drug for the treatment of focal seizures. CBZ gets metabolized by cytochrome enzymes mainly CYP3A5. It is difficult to predict clinically whether a patient is likely to suffer from CBZ toxicity. Hence, we planned to evaluate the use of genotyping and therapeutic drug monitoring (TDM) vs. only TDM in epileptic patients on CBZ as a strategy for risk minimization. Methods: This double-blind, randomized controlled trial included 60 epileptic patients taking carbamazepine, divided into two equal groups. One group’s carbamazepine dosing was guided by genotyping, while the other group’s doses were based solely on clinical judgment.Results: A total of 60 patients were enrolled in the study, in two arms, group A (genotyping and TDM both) and Group B (only TDM), each arm comprising 30 patients. Among the CYP3A5 metabolizer group, the frequency of expressors and non-expressors was (57%) and (43%), respectively. During follow-up visits, at one month, three cases of adverse drug reactions (ADRs) were reported. ADR count decreased to two cases during the three-month follow-up and further reduced to only one case of ADR at the 12-month assessment. It was found that there is no statistically significant association between CYP3A5 metabolizer and ADR occurrence.Conclusion: Adding genotyping to TDM did not significantly reduce the risk of carbamazepine toxicity. However, genotyping may still be useful for patients who exhibit symptoms of toxicity. KW - Carbamazepine KW - Drug Monitoring KW - Drug-Related Side Effects and Adverse Reactions KW - Genetic polymorphism KW - Risk Evaluation and Mitigation CR - Adithan, C., Gerard, N., Vasu, S., Rosemary, J., Shashindran, C. H., & Krishnamoorthy, R. (2003). Allele and genotype frequency of CYP2C19 in a Tamilian population. British Journal of Clinical Pharmacology, 56(3), 331–333. https://doi.org/10.1046/j.1365-2125.2003.01883.x CR - Al-Gahtany, M., Karunakaran, G., & Munisamy, M. (2014). Pharmacogenetics of CYP3A5 on Carbamazepine pharmacokinetics in epileptic patients developing toxicity. BMC Genomics, 15(S2), P2, 1471-2164-15-S2-P2. https://doi.org/10.1186/1471-2164-15-S2-P2 CR - Barry, A., & Levine, M. (2010). A Systematic Review of the Effect of CYP3A5 Genotype on the Apparent Oral Clearance of Tacrolimus in Renal Transplant Recipients. Therapeutic Drug Monitoring, 32(6), 708–714. https://doi.org/10.1097/FTD.0b013e3181f3c063 CR - Cavalleri, G. L., McCormack, M., Alhusaini, S., Chaila, E., & Delanty, N. (2011). Pharmacogenomics and Epilepsy: The Road Ahead. Pharmacogenomics, 12(10), 1429–1447. https://doi.org/10.2217/pgs.11.85 CR - Franco, V., & Perucca, E. (2015). The pharmacogenomics of epilepsy. Expert Review of Neurotherapeutics, 15(10), 1161–1170. https://doi.org/10.1586/14737175.2015.1083424 CR - Ganesapandian, M., Ramasamy, K., Adithan, S., & Narayan, S. (2019). Influence of cytochrome P450 3A5 (CYP3A5) genetic polymorphism on dose-adjusted plasma levels of carbamazepine in epileptic patients in South Indian population. Indian Journal of Pharmacology, 51(6), 384. https://doi.org/10.4103/ijp.IJP_122_19 CR - Kuehl, P., Zhang, J., Lin, Y., Lamba, J., Assem, M., Schuetz, J., Watkins, P. B., Daly, A., Wrighton, S. A., Hall, S. D., Maurel, P., Relling, M., Brimer, C., Yasuda, K., Venkataramanan, R., Strom, S., Thummel, K., Boguski, M. S., & Schuetz, E. (2001). Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nature Genetics, 27(4), 383–391. https://doi.org/10.1038/86882 CR - Lakhan, R., Kumari, R., Singh, K., Kalita, J., Misra, U. K., & Mittal, B. (2011). Possible role of CYP2C9 & CYP2C19 single nucleotide polymorphisms in drug refractory epilepsy. The Indian Journal of Medical Research, 134(3), 295–301. CR - Lu, Q., Huang, Y.-T., Shu, Y., Xu, P., Xiang, D.-X., Qu, Q., & Qu, J. (2018). Effects of CYP3A5 and UGT2B7 variants on steady-state carbamazepine concentrations in Chinese epileptic patients. Medicine, 97(30), e11662. https://doi.org/10.1097/MD.0000000000011662 CR - Meng, H., Ren, J., Lv, Y., Lin, W., & Guo, Y. (2011). Association study of CYP3A5 genetic polymorphism with serum concentrations of carbamazepine in Chinese epilepsy patients. Neurology Asia. CR - Milovanovic, D. D., Radosavljevic, I., Radovanovic, M., Milovanovic, J. R., Obradovic, S., Jankovic, S., Milovanovic, D., & Djordjevic, N. (2015). CYP3A5 Polymorphism in Serbian Paediatric Epileptic Patients on Carbamazepine Treatment. Serbian Journal of Experimental and Clinical Research, 16(2), 93–99. https://doi.org/10.1515/sjecr-2015-0012 CR - Orozco-Suarez, S. (2014). Genetic polymorphisms associated with antiepileptic metabolism. Frontiers in Bioscience, 6(2), 377–386. https://doi.org/10.2741/e713 CR - Panomvana, D., Traiyawong, T., & Towanabut, S. (2013). Effect of CYP3A5 Genotypes on the Pharmacokinetics of Carbamazepine when used as Monotherapy or Co-Administered with Phenytoin, Phenobarbital or Valproic Acid in Thai Patients. Journal of Pharmacy & Pharmaceutical Sciences, 16(4), 502. https://doi.org/10.18433/J3Q888 CR - Park, P.-W., Seo, Y. H., Ahn, J. Y., Kim, K.-A., & Park, J.-Y. (2009). Effect of CYP3A5*3 genotype on serum carbamazepine concentrations at steady-state in Korean epileptic patients. Journal of Clinical Pharmacy and Therapeutics, 34(5), 569–574. https://doi.org/10.1111/j.1365-2710.2009.01057.x CR - Perucca, E. (2006). Clinically relevant drug interactions with antiepileptic drugs. British Journal of Clinical Pharmacology, 61(3), 246–255. https://doi.org/10.1111/j.1365-2125.2005.02529.x CR - Potter, W. Z., & Ketter, T. A. (1993). Pharmacological issues in the treatment of bipolar disorder: Focus on mood-stabilising compounds. Canadian Journal of Psychiatry. Revue Canadienne De Psychiatrie, 38(3 Suppl 2), S51-56. CR - Puranik, Y. G., Birnbaum, A. K., Marino, S. E., Ahmed, G., Cloyd, J. C., Remmel, R. P., Leppik, I. E., & Lamba, J. K. (2013). Association of Carbamazepine Major Metabolism and Transport Pathway Gene Polymorphisms and Pharmacokinetics in Patients with Epilepsy. Pharmacogenomics, 14(1), 35–45. https://doi.org/10.2217/pgs.12.180 CR - Pynnönen, S., Frey, H., & Sillanpää, M. (1980). The auto-induction of carbamazepine during long-term therapy. International Journal of Clinical Pharmacology, Therapy, and Toxicology, 18(6), 247–252. CR - Raj Panday, D., Panday, K. R., Basnet, M., Kafle, S., Shah, B., & Rauniar, G. (2017). Therapeutic Drug Monitoring of Carbamazepine. International Journal of Neurorehabilitation, 04(01). https://doi.org/10.4172/2376-0281.1000245 CR - Roden, D. M. (2006). Pharmacogenomics: Challenges and Opportunities. Annals of Internal Medicine, 145(10), 749. https://doi.org/10.7326/0003-4819-145-10-200611210-00007 CR - Seo, T., Nakada, N., Ueda, N., Hagiwara, T., Hashimoto, N., Nakagawa, K., & Ishitsu, T. (2006). Effect of CYP3A5*3 on carbamazepine pharmacokinetics in Japanese patients with epilepsy. Clinical Pharmacology & Therapeutics, 79(5), 509–510. https://doi.org/10.1016/j.clpt.2006.02.009 CR - Seven, M., Batar, B., Unal, S., Yesil, G., Yuksel, A., & Guven, M. (2014). The Effect of Genetic Polymorphisms of Cytochrome P450 CYP2C9, CYP2C19, and CYP2D6 on Drug-Resistant Epilepsy in Turkish Children. Molecular Diagnosis & Therapy, 18(2), 229–236. https://doi.org/10.1007/s40291-013-0078-8 CR - Sisodiya, S. M., & Goldstein, D. B. (2007). Drug resistance in epilepsy: More twists in the tale. Epilepsia, 48(12), 2369–2370. https://doi.org/10.1111/j.1528-1167.2007.01260_1.x CR - Sullivan-Klose, T. H., Ghanayem, B. I., Bell, D. A., Zhang, Z.-Y., Kaminsky, L. S., Shenfleld, G. M., Miners, J. O., Birkett, D. J., & Goldstein, J. A. (1996). The role of the CFP2C9-Leu 359 allelic variant in the tolbutamide polymorphism: Pharmacogenetics, 6(4), 341–349. https://doi.org/10.1097/00008571-199608000-00007 CR - Thorn, C. F., Leckband, S. G., Kelsoe, J., Steven Leeder, J., Müller, D. J., Klein, T. E., & Altman, R. B. (2011). PharmGKB summary: Carbamazepine pathway. Pharmacogenetics and Genomics, 21(12), 906–910. https://doi.org/10.1097/FPC.0b013e328348c6f2 CR - Touw, D. J., Neef, C., Thomson, A. H., & Vinks, A. A. (2005). Cost-Effectiveness of Therapeutic Drug Monitoring: A Systematic Review. Therapeutic Drug Monitoring, 27(1), 10–17. https://doi.org/10.1097/00007691-200502000-00004 CR - van Tyle, J., & Winter, M. (2004). Carbamazepine. In Basic clinical pharmacokinetics (4th ed., pp. 172–179). Lippincott Williams & Wilkins. CR - Yeap, L.-L., Lim, K.-S., Ng, C.-C., Hui-Ping Khor, A., & Lo, Y.-L. (2014). Slow Carbamazepine Clearance in a Nonadherent Malay Woman With Epilepsy and Thyrotoxicosis. Therapeutic Drug Monitoring, 36(1), 3–9. https://doi.org/10.1097/FTD.0000000000000024 UR - https://doi.org/10.62425/rtpharma.1614127 L1 - https://dergipark.org.tr/en/download/article-file/4496181 ER -