TY - JOUR T1 - Hypericum perforatum L. Kalluslarında Ekzojen Absisik Asidin Kolinesteraz Enzim Aktivitesi ve Fenolik Bileşik Değişkenliği Üzerine Etkinliği TT - Efficacy of Exogenous Abscisic Acid on Cholinesterase Enzyme Activity and Phenolic Compound Variability in Hypericum perforatum calli AU - Önlü, Şeyma PY - 2025 DA - July Y2 - 2025 DO - 10.18016/ksutarimdoga.vi.1614168 JF - Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi JO - KSU J. Agric Nat. PB - Kahramanmaras Sutcu Imam University WT - DergiPark SN - 2619-9149 SP - 1083 EP - 1094 VL - 28 IS - 4 LA - tr AB - Bu çalışmanın amacı, absisik asitin (ABA) Hypericum perforatum'un in vitro kalluslarının kolinesteraz enzim aktiviteleri ve biyoaktif bileşenleri üzerine etkisini araştırmaktır. Kalluslar, 0.5 mg L-1 thidiazuron (TDZ) ve 0.5 mg L-1 indol bütirik asit (IBA) içeren Linsmaier Skoog (LS)/B5 besiyerinden elde edildi. Doku kültüründe elde edilen kalluslara farklı absisik asit (0,01 mg L-1, 0,05 mg L-1 ve 0,1 mg L-1) uygulamaları yapıldı ve %80'lik metanolde ekstrakte edildi. Hispidulin, fumarik asit, akasetin, epikateşin, naringenin bileşikleri Sıvı Kromatografisi-Yüksek Çözünürlüklü Kütle Spektrometrisi (LC-HRMS) ile analiz edildi. Kallus örneklerinde en yüksek epikateşin (1.09 mg L-1) 0.05 mg L-1 ABA'da bulunurken, fumarik asit (2.30 mg L-1) ve hispidulin (0.78 mg L-1) bileşikleri en yüksek 0.1 mg L-1 ABA içerenlerde tespit edildi. Sadece 0.01 mg L-1 ABA içeren ortamda akasetin (0.10 mg L-1) üretilirken, 0.05 mg L-1 ABA içeren besin ortamında naringenin (0.01 mg L-1) üretildi. En güçlü Asetilkolinesteraz (AchE) (0.207±0.012) ve Bütirilkolinesteraz BChE (0.243±0.019) inhibisyon aktivitesinin 0.1 mg L -1 ABA uygulamasıyla olduğu ortaya çıktı. Bu çalışma, ABA'nın H.perforatum'un kallus kültüründe uyarıcı olarak kullanılabileceğini ve ilgili metabolitlerin miktarlarının elisitör aracılığıyla değiştirilebileceğini göstermiştir. KW - Absisik asit KW - Kallus üretimi KW - Hispidulin KW - LC-HRMS KW - Kolinesteraz inhibisyonu N2 - The aim of this study was to investigate the effect of abscisic acid (ABA) on cholinesterase enzyme activities and bioactive components of in vitro calli of Hypericum perforatum. Calli were obtained from Linsmaier Skoog (LS)/B5 medium containing 0.5 mg L-1 thidiazuron (TDZ) and 0.5 mg L-1 indole butyric acid (IBA). Different abscisic acid (0.01 mg L-1, 0.05 mg L-1, and 0.1 mg L-1) applications were performed on the calli obtained in tissue culture and extracted in 80% methanol. Hispidulin, fumaric acid, acacetin, epicatechin, and naringenin compounds were analyzed in Liquid chromatography–high–resolution mass spectrometry (LC-HRMS). While epicatechin (1.09 mg L-1) was found at the highest 0.05 mg L-1 ABA in callus samples, fumaric acid (2.30 mg L-1) and hispidulin (0.78 mg L-1) compounds were detected in the highest containing of 0.1 mg L-1 ABA. Acacetin (0.10 mg L-1) was produced in only 0.01 mg L-1 ABA, whereas naringenin (0.01 mg L-1) was produced in medium containing 0.05 mg L-1 ABA. The strongest Acetylcholinesterase (AChE) (0.207±0.012) and Butyrylcholinesterase (BChE) (0.243±0.019) inhibition activity was shown the best with 0.1 mg L-1 ABA application. This study has shown that ABA can be used as an elicitor in callus culture of H. perforatum, and the amounts of related metabolites can be changed via elicitors CR - Abyadeh, M., Gupta, V., Paulo, J. A., Mahmoudabad, A. G., Shadfar, S., Mirshahvaladi, S., Gupta, V., Nguyen, C. T., Finkelstein, D. I., & You, Y. (2024). Amyloid-beta and tau protein beyond Alzheimer’s disease. Neural Regeneration Research, 19(6), 1262-1276. https://doi.org/https://doi.org/10.4103/1673-5374.386406 CR - Al-Khayri, J. M., Narasimha, S. W., Vennapusa, A. R., Nagella, P., Shehata, W. F., & Al-Mssallem, M. Q. (2024). Biotechnological approaches for the production of hypericin and other important metabolites from the genus Hypericum. Plant Cell, Tissue and Organ Culture (PCTOC), 156(3), 100. https://doi.org/https://doi.org/10.1007/s11240-024-02723-7 CR - Altıntaş, M. Y. (2025). Hypericum calycinum L. Türü Üzerine Detaylı Anatomik Çalışma. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 28(3), 672-682. https://doi.org/https://doi.org/10.1016/j.indcrop.2012.07.017 CR - Altun, M. L., Yılmaz, B. S., Orhan, I. E., & Citoglu, G. S. (2013). Assessment of cholinesterase and tyrosinase inhibitory and antioxidant effects of Hypericum perforatum L.(St. John's wort). Industrial Crops and Products, 43, 87-92. https://doi.org/https://doi.org/10.1016/j.indcrop.2012.07.017 CR - Bal, A., Özen, H. Ç., Tural, B., & Ertaş, E. (2022). The effects of different concentrations of foliar applied chitosan, iron oxide and chitosan-coated iron oxide nanoparticles on the secondary metabolites of Hypericum triquetrifolium Turra. during full bloom. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 25(4), 811-818. https://doi.org/ https://doi.org/10.18016/ksutarimdoga.vi.882856 CR - Barnes, J., Anderson, L. A., & Phillipson, J. D. (2001). St John's wort (Hypericum perforatum L.): a review of its chemistry, pharmacology and clinical properties. Journal of pharmacy and pharmacology, 53(5), 583-600. https://doi.org/https://doi.org/10.1211/0022357011775910 CR - Boga, M., Ertas, A., Eroglu-Ozkan, E., Kizil, M., Ceken, B., & Topcu, G. (2016). Phytochemical analysis, antioxidant, antimicrobial, anticholinesterase and DNA protective effects of Hypericum capitatum var. capitatum extracts. South African Journal of Botany, 104, 249-257. https://doi.org/https://doi.org/10.1016/j.sajb.2016.02.204 CR - Bombardelli, E., & Morazzoni, P. (1995). Hypericum perforatum. Fitoterapia, 66, 43-68. CR - Bruneton, J. (1999). Pharmacognosy, phytochemistry, medicinal plants. Intercept Ltd.: Hampshire, UK,. Chulasiri, M., Bunyapraphatsara, N., & Moongkarndi, P. (1992). Mutagenicity and antimutagenicity of hispidulin and hortensin, the flavonoids from Millingtonia hortensis L. Environmental and Molecular Mutagenesis, 20(4), 307-312. https://doi.org/https://doi.org/10.1002/em.2850200409 CR - Crockett, S. L., & Robson, N. K. (2011). Taxonomy and chemotaxonomy of the genus Hypericum. Medicinal and aromatic plant science and biotechnology, 5(Special Issue 1), 1. CR - Ebadollahi, R., Jafarirad, S., Kosari-Nasab, M., & Mahjouri, S. (2019). Effect of explant source, perlite nanoparticles and TiO2/perlite nanocomposites on phytochemical composition of metabolites in callus cultures of Hypericum perforatum. Scientific Reports, 9(1), 12998. https://doi.org/ https://doi.org/10.1038/s41598-019-49504-3 CR - Ellman, G. L., Courtney, K. D., Andres Jr, V., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical pharmacology, 7(2), 88-95. https://doi.org/https://doi.org/10.1016/0006-2952(61)90145-9 CR - Ferreira, P. G., Ferraz, A. C., Figueiredo, J. E., Lima, C. F., Rodrigues, V. G., Taranto, A. G., Ferreira, J. M. S., Brandão, G. C., Vieira-Filho, S. A., & Duarte, L. P. (2018). Detection of the antiviral activity of epicatechin isolated from Salacia crassifolia (Celastraceae) against Mayaro virus based on protein C homology modelling and virtual screening. Archives of virology, 163, 1567-1576. https://doi.org/https://doi.org/10.1007/s00705-018-3774-1 CR - Gadzovska, S., Maury, S., Delaunay, A., Spasenoski, M., Hagège, D., Courtois, D., & Joseph, C. (2013). The influence of salicylic acid elicitation of shoots, callus, and cell suspension cultures on production of naphtodianthrones and phenylpropanoids in Hypericum perforatum L. Plant Cell, Tissue and Organ Culture (PCTOC), 113, 25-39. https://doi.org/https://doi.org/10.1007/s11240-012-0248-0 CR - Gadzovska, S., Maury, S., Delaunay, A., Spasenoski, M., Joseph, C., & Hagege, D. (2007). Jasmonic acid elicitation of Hypericum perforatum L. cell suspensions and effects on the production of phenylpropanoids and naphtodianthrones. Plant cell, tissue and organ culture, 89, 1-13. https://doi.org/https://doi.org/10.1007/s11240-007-9203-x CR - Gadzovska, S., Maury, S., Ounnar, S., Righezza, M., Kascakova, S., Refregiers, M., Spasenoski, M., Joseph, C., & Hagège, D. (2005). Identification and quantification of hypericin and pseudohypericin in different Hypericum perforatum L. in vitro cultures. Plant Physiology and Biochemistry, 43(6), 591-601. https://doi.org/https://doi.org/10.1016/j.plaphy.2005.05.005 CR - Gil, B., Sanz, M., Terencio, M., Ferrandiz, M., Bustos, G., Paya, M., Gunasegaran, R., & Alcaraz, M. (1994). Effects of flavonoids on Naja naja and human recombinant synovial phospholipases A2 and inflammatory responses in mice. Life sciences, 54(20), PL333-338. https://doi.org/https://doi.org/10.1016/0024-3205(94)90021-3 CR - Gjureci, B., Todorovska, M., Stanoeva, J. P., Tusevski, O., & Simic, S. G. (2025). Elicitation of Hypericum perforatum L. hairy root cultures with salicylic acid and jasmonic acid enhances the production of phenolic compounds and naphthodianthrones with biological activities. Plant Cell, Tissue and Organ Culture (PCTOC), 160(3), 61. https://doi.org/https://doi.org/10.1007/s11240-025-03005-6 CR - Inal, E., Ulusoy, Ş., Yapar, E. A., Gürer, E. S., Yalçın, Ş., & Kartal, M. (2022). Investigation of resveratrol and phenolic compounds of ethnomedicinal plant Polygonum cognatum Meissn. collected from Sivas. J Res Pharm, 26(6), 1752-1757. https://doi.org/https://doi.org/10.29228/jrp.265 CR - Kakouri, E., Trigas, P., Daferera, D., Skotti, E., Tarantilis, P. A., & Kanakis, C. (2023). Chemical characterization and antioxidant activity of nine Hypericum species from Greece. Antioxidants, 12(4), 899. https://doi.org/https://doi.org/10.3390/antiox12040899 CR - Karuppusamy, S. (2009). A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. J Med Plants Res, 3(13), 1222-1239. https://doi.org/https://doi.org/10.5897/JMPR.9000026 CR - Kavvadias, D., Sand, P., Youdim, K. A., Qaiser, M. Z., Rice‐Evans, C., Baur, R., Sigel, E., Rausch, W. D., Riederer, P., & Schreier, P. (2004). The flavone hispidulin, a benzodiazepine receptor ligand with positive allosteric properties, traverses the blood–brain barrier and exhibits anticonvulsive effects. British journal of pharmacology, 142(5), 811-820. https://doi.org/https://doi.org/10.1038/sj.bjp.0705828 CR - Lema-Rumińska, J., Goncerzewicz, K., & Gabriel, M. (2013). Influence of abscisic acid and sucrose on somatic embryogenesis in cactus Copiapoa tenuissima Ritt. forma mostruosa. The Scientific World Journal, 2013(1), 513985. https://doi.org/ https://doi.org/10.1155/2013/513985 CR - Lin, Y.-T., Wu, Y.-H., Tseng, C.-K., Lin, C.-K., Chen, W.-C., Hsu, Y.-C., & Lee, J.-C. (2013). Green tea phenolic epicatechins inhibit hepatitis C virus replication via cycloxygenase-2 and attenuate virus-induced inflammation. PloS one, 8(1), e54466. https://doi.org/https://doi.org/10.1371/journal.pone.0054466 CR - Manivannan, A., Soundararajan, P., Park, Y. G., & Jeong, B. R. (2015). In vitro propagation, phytochemical analysis, and evaluation of free radical scavenging property of Scrophularia kakudensis Franch tissue extracts. BioMed Research International, 2015(1), 480564. https://doi.org/https://doi.org/10.1155/2015/480564 CR - Murthy, H. N., Lee, E.-J., & Paek, K.-Y. (2014). Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell, Tissue and Organ Culture (PCTOC), 118, 1-16. https://doi.org/https://doi.org/10.1007/s11240-014-0467-7 CR - Ozkan, E. E., Ozden, T. Y., Ozsoy, N., & Mat, A. (2018). Evaluation of chemical composition, antioxidant and anti-acetylcholinesterase activities of Hypericum neurocalycinum and Hypericum malatyanum. South African Journal of Botany, 114, 104-110. https://doi.org/ https://doi.org/10.1016/j.sajb.2017.10.022 CR - Önlü, Ş. (2023, 11-13 OCTOBER). Investigation of phenolic compounds and elicited by jasmonate derivatives on in vitro samples of Hypericum perforatum L. 6th International Eurasian Conference on Biological and Chemical Sciences (EurasianBioChem 2023) ANKARA. CR - Önlü, Ş., Yaman, C., Kurtul, E., Önlü, H., Bahadir-Acikara, Ö., Tusevski, O., Simic, S. G., & Özcan, S. (2025). Production of elicitor-induced phytochemicals in callus and shoot cultures of Hypericum heterophyllum. South African Journal of Botany, 177, 295-304. https://doi.org/https://doi.org/10.1016/j.sajb.2024.12.003 CR - Pathania, S., & Singh, P. K. (2021). Analyzing FDA-approved drugs for compliance of pharmacokinetic principles: should there be a critical screening parameter in drug designing protocols? Expert Opinion on Drug Metabolism & Toxicology, 17(4), 351-354. https://doi.org/ https://doi.org/10.1080/17425255.2021.1865309 CR - Shasmita, Behera, S., Mishra, P., Samal, M., Mohapatra, D., Monalisa, K., & Naik, S. K. (2023). Recent advances in tissue culture and secondary metabolite production in Hypericum perforatum L. Plant Cell, Tissue and Organ Culture (PCTOC), 154(1), 13-28. https://doi.org/https://doi.org/10.1007/s11240-023-02525-3 CR - Song, R., Xia, Y., Zhao, Z., Yang, X., & Zhang, N. (2023). Effects of plant growth regulators on the contents of rutin, hyperoside and quercetin in Hypericum attenuatum Choisy. PloS one, 18(5), e0285134. https://doi.org/10.1371/dergi.pone.0285134 CR - Suryawanshi, M. V., Gujarathi, P. P., Mulla, T., & Bagban, I. (2024). Hypericum perforatum: A comprehensive review on pharmacognosy, preclinical studies, putative molecular mechanism, and clinical studies in neurodegenerative diseases. Naunyn-Schmiedeberg's Archives of Pharmacology, 397(6), 3803-3818. https://doi.org/10.1007/s00210-023-02915-6 CR - Sut, S., Dall'Acqua, S., Flores, G. A., Cusumano, G., Koyuncu, İ., Yuksekdag, O., Emiliani, C., Venanzoni, R., Angelini, P., & Selvi, S. (2025). Hypericum empetrifolium and H. lydium as Health Promoting Nutraceuticals: Assessing Their Role Combining In Vitro In Silico and Chemical Approaches. Food Science & Nutrition, 13(4), e70053. https://doi.org/https://doi.org/10.1002/fsn3.70053 CR - Tusevski, O., Todorovska, M., Todorovska, I., Petreska Stanoeva, J., & Gadzovska Simic, S. (2024). Production of Phenylpropanoids, Naphthodianthrones and Antioxidant Status of Hypericum perforatum L. Transgenic Shoots. Horticulturae, 10(1), 59. https://doi.org/https://doi.org/10.3390/horticulturae10010059 CR - Uçar, K., & Göktaş, Z. (2023). Biological activities of naringenin: A narrative review based on in vitro and in vivo studies. Nutrition Research. https://doi.org/https://doi.org/10.1016/j.nutres.2023.08.006 CR - Vaičiukynė, M., Žiauka, J., Žūkienė, R., Vertelkaitė, L., & Kuusienė, S. (2019). Abscisic acid promotes root system development in birch tissue culture: a comparison to aspen culture and conventional rooting‐related growth regulators. Physiologia plantarum, 165(1), 114-122. https://doi.org/ https://doi.org/10.1111/ppl.12860 CR - Xiao, C.-Y., Mu, Q., & Gibbons, S. (2020). The phytochemistry and pharmacology of Hypericum. Progress in the chemistry of organic natural products 112, 85-182. https://doi.org/https://doi.org/10.1007/978-3-030-52966-6_2 CR - Yaman, C., Erenler, R., Atalar, M. N., Adem, Ş., & Çalişkan, U. K. (2024). Phytochemical Properties, Antioxidant and in Vitro/in Silico Anti-Acetylcholinesterase Activities of Hypericum heterophyllum Leaf from Türkiye. Brazilian Archives of Biology and Technology, 67, e24230043. https://doi.org/https://doi.org/10.1590/1678-4324-2024230043 CR - Zhang, R., Ji, Y., Zhang, X., Kennelly, E. J., & Long, C. (2020). Ethnopharmacology of Hypericum species in China: A comprehensive review on ethnobotany, phytochemistry and pharmacology. Journal of ethnopharmacology, 254, 112686. https://doi.org/https://doi.org/10.1016/j.jep.2020.112686 CR - Zhao, J., Davis, L. C., & Verpoorte, R. (2005). Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnology advances, 23(4), 283-333. https://doi.org/https://doi.org/10.1016/ j.biotechadv. 2005.01.003 UR - https://doi.org/10.18016/ksutarimdoga.vi.1614168 L1 - https://dergipark.org.tr/en/download/article-file/4496348 ER -