TY - JOUR T1 - Lattice Boltzmann Modelling of Natural Convection Problems in a Cavity with a Different Wall Temperature TT - Farklı Duvar Sıcaklıklarına Sahip Bir Oyukta Doğal Taşınım Problemlerinin Lattice Boltzmann Modelleme Yöntemiyle İncelenme AU - Aslan, Erman AU - Yalçın, Özlem PY - 2025 DA - April Y2 - 2025 DO - 10.16984/saufenbilder.1615457 JF - Sakarya University Journal of Science JO - SAUJS PB - Sakarya University WT - DergiPark SN - 2147-835X SP - 151 EP - 159 VL - 29 IS - 2 LA - en AB - In this study, the cyclic natural convection problem in a square enclosure is modeled using the Lattice Boltzmann Method (LBM) under laminar flow conditions. Four different combinations of boundary conditions are employed to create cases. These cases are denoted as HHHC (Horizontal Hot Horizontal Cold), HHVC (Horizontal Hot Vertical Cold), VHHC (Vertical Hot Horizontal Cold), and VHVC (Vertical Hot Vertical Cold). Four Rayleigh numbers have been utilized to represent laminar flow conditions, namely Ra=104, 105, 106, and 107. For validation purposes, the well-validated finite volume method-based commercial code Ansys-Fluent is employed. In the VHVC model and at the highest Rayleigh number, the results obtained with LBM were compared to and validated against the results obtained with the finite volume method. Nusselt numbers are compared for the four cases based on Rayleigh numbers, and the case with highest heat transfer identified. Cases of HHHC and VHVC have produced the lowest and highest Nusselt number, respectively. KW - Lattice Boltzmann Method KW - Natural convection KW - Computational fluid dynamics KW - Laminar flow KW - Nusselt number N2 - Bu çalışmada, bir kare kapalı alanda döngüsel doğal taşınım problemi, laminar akış koşulları altında Lattice Boltzmann metodu (LBM) kullanılarak modellenmiştir. Farklı durumları oluşturmak için dört farklı sınır koşulu kombinasyonu kullanılmıştır. Bu durumlar HHHC (Yatay Sıcak Yatay Soğuk), HHVC (Yatay Sıcak Dikey Soğuk), VHHC (Dikey Sıcak Yatay Soğuk) ve VHVC (Dikey Sıcak Dikey Soğuk) olarak adlandırılmıştır. Laminar akış koşullarını temsil etmek için dört farklı Rayleigh sayısı kullanılmıştır: Ra=10⁴, 10⁵, 10⁶ ve 10⁷. Doğrulama amacıyla, iyi doğrulanmış sonlu hacim metodu tabanlı ticari Ansys-Fluent kodu kullanılmıştır. VHVC modelinde ve en yüksek Rayleigh sayısında, LBM ile elde edilen sonuçlar, sonlu hacim metodu ile elde edilen sonuçlarla karşılaştırılmış ve doğrulanmıştır. Nusselt sayıları, Rayleigh sayıları bazında dört durum için karşılaştırılmış ve en yüksek ısı transferini sağlayan durum belirlenmiştir. HHHC ve VHVC durumları sırasıyla en düşük ve en yüksek Nusselt sayısını üretmiştir. CR - G. De Vahl Davis, "Natural convection of air in a square cavity: A benchmark numerical solution," International Journal for Numerical Methods Fluids, vol. 3, pp. 249-264, May/June 1983. CR - S. Ostrach, "Natural convection in enclosure," ASME Journal of Heat and Mass Transfer, vol. 110, pp. 1175-1190, 1988. CR - J. L. Lage, A. Bejan, "The resonance of natural convection in an enclosure heated periodically from the side," International Journal of Heat and Mass Transfer, vol. 36, issue. 8, pp.2027-2038, 1993. CR - M. Mahdavi, M. Sharifpur, H. Ghodsinezhad, J. P. Meyer, "Experimental and numerical study of the thermal and hydrodynamic characteristics of laminar natural convective flow inside a rectangular cavity with water, ethylene glycol-water and air," Experimental Thermal and Fluid Science, vol. 78, pp.50-64, 2016. CR - N. Ugurbilek, Z. Sert, F. Selimefendigil, H. F. Oztop, "3D laminar natural convection in a cubical enclosure with gradually changing partitions," International Communications in Heat and Mass Transfer, vol. 133, 105932, 2022. CR - T. Pesso, S. Piva, "Laminar natural convection in a square cavity: Low Prandtl numbers and large density differences," International Journal of Heat and Mass Transfer, vol. 53, issue. 3-4, pp. 1036-1043, 2009. CR - M. Turkyilmazoglu, "Exponential nonuniform wall heating of a square cavity and natural convection," Chinese Journal of Physics, vol. 77, pp. 2122-2135, 2022. CR - M. Turkyilmazoglu, "Driven flow motion by a dually moving lid of a square cavity," European Journal of Mechanics / B Fluids, vol. 94, pp. 17-29, 2022. CR - Y. H. Qian, D. D’Humieres, P. Lalemand, "Lattice BGK models for Navier–Stokes equation," Europhysics Letters, vol. 17, issue.6, pp. 479-484, 1992. CR - S. Y. Chen, G. D. Doolen, "Lattice Boltzmann method for fluid flows," Annual Reviews Fluid Mechanics, vol. 30, pp. 329-364, 1998. CR - Y. H. Qian, S. Succi, S. A. Orszag, "Recent advance in lattice Boltzmann computing," Annual Reviews of Computational Physics III, pp. 195-242, 1995. CR - C. K. Aidun, "Lattice-Boltzmann method for complex flows," Annual Reviews of Fluid Mechanics, vol. 42, pp. 439-472, 2010. CR - L. Chen, Q. Kang, Y. Mu, Y. L. He, W. Q. Tao, "A critical review of the pseudopotential multiphase lattice Boltzmann model: Methods and applications," International Journal of Heat and Mass Transfer, vol. 76, 210236, 2014. CR - I. Taymaz, E. Aslan, A. C. Benim, "Numerical investigation of incompressible fluid flow and heat transfer across a bluff body in a channel flow," Thermal Science, vol. 19, issue. 2, pp. 537-547, 2015 CR - P. Karki, A. K. Yadav, D. A. Perumal, "Lattice Boltzmann computation of two dimensional differentially heated cavity of incompressible fluid with different aspect ratios," in International Conference on Intelligent Computing, Instrumentation and Control Technologies-2017, Kannur, Kerala, 2017, pp. 1540-1550. CR - Y. Feng, S. Guo, W. Tao, P. Sagaut, "Regularized thermal lattice Boltzmann method for natural convection with large temperature differences," International Journal of Heat and Mass Transfer, vol. 125, pp. 1379-1391, 2018. CR - Y. Wei, H. Yang, H. S. Dou, Z. Lin, Z. Wang, Y. Qian, "A novel two-dimensional coupled lattice Boltzmann model for thermal incompressible flows," Applied Mathematics and Computation, vol. 339, pp. 556-567, 2018. CR - P. Pichandi, S. Anbalagan, "Natural convection heat transfer and fluid flow analysis in a 2D square enclosure with sinusoidal wave and different convection mechanism," International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29, issue. 9, pp. 2158-2188, 2018. CR - M. F. Hasan, M. M. Molla, S. Siddiqa, A. M. Khan, "Mesescopic CUDA 3D MRT-LBM simulaion of natural convection of poer-law fluids in a differentially heated cubic cavity with a machine learning cross-validation," Arabian Journal for Science and Engineering, vol. 49, pp 10687-10723, 2024. CR - T. Li, C. Zhu, Z. Gao, P. Lei, S. Liu, "GPU parallel compuing based on PF-LBM method for simulation dendrites growth under natural convection condition," AIP Advances vol. 14, issue. 2, 025240, 2024. CR - Ansys-Fluent, version 20.0, Canonsburf PA, Ansys-Inc, 2019 CR - P. L. Bahatnagar, E. P. Gross, M. Krook, "A Model for Collisional Processes in Gases I: Small Amplitude Processes in Charged and Neutral One-Component System," Physical Review, vol. 94, issue. 3, pp. 511-525, 1954. CR - A. A. Mohamad, Lattice Boltzmann Fundamentals and Engineering Applications with Computer Codes. 2nd ed., London: Springer, 2019. UR - https://doi.org/10.16984/saufenbilder.1615457 L1 - https://dergipark.org.tr/en/download/article-file/4501998 ER -