TY - JOUR T1 - Investigation of the antimicrobial effects of niclosamide, furosemide and nifedipine drugs released from a modified hydrogel structure AU - Keskinates, Mukaddes AU - Yılmaz, Bahar AU - Bayrakcı, Mevlüt PY - 2025 DA - September Y2 - 2025 DO - 10.59313/jsr-a.1620817 JF - Journal of Scientific Reports-A JO - JSR-A PB - Kütahya Dumlupinar University WT - DergiPark SN - 2687-6167 SP - 1 EP - 11 IS - 062 LA - en AB - HEMA-based hydrogels were also developed and they were characterized for a few drugs including nifedipine, furosemide and niclosamide. The HEMA hydrogels were synthesized by functionalizing with methacrylated β−cyclodextrin monomer and then were tested in drug release studies. Antimicrobial study against bacteria: The pathogen was studied using disc diffusion and microdilution methods for the drug released from HEMA-based hydrogels. The hydrogel synthesized was found to have a very high capacity for absorption of water and it was also found that depending on this, the potential of drug absorption was also very high. In vitro, cumulative drug release studies on nifedipine, furosemide and niclosamide were carried out using hydrogel under various time and pH conditions. The released drug was adjustable as we obtained data on drug release profiles. Nifedipine, furosemide and niclosamide release percentages were 68.9±3.8%, 75.2±3.6% and 58.7±4.2%, respectively. Additionally, all three drugs exhibited marked activity against bacteria. These findings indicate that the synthesized hydrogels are a promising basis for bio­medical applications. KW - Methacrylated β-Cyclodextrin KW - Niclosamide KW - Furosemide KW - Nifedipine CR - [1] M. Berthet and J. Durand, "Controlled release of drugs from hydrogels: A review of recent developments and applications", J. Control. Release, 284, 1-14. 2018, doi: 10.1016/j.jconrel.2018.06.005 CR - [2] H. Santos and F. Azevedo, "Development and evaluation of novel HEMA-based hydrogels for controlled drug delivery", Mater. Sci. Eng. C, 104, 109974. 2019, doi: 10.1016/j.msec.2019.109974 CR - [3] M. Alsenani, M. Ali, and N. A. Alwabel, "Antibacterial activities of marine macroalgae extracts using the broth microdilution method", J. Appl. Phycol., 32(4), 2291-2300. 2020, doi: 10.1007/s10811-020-02194-0 CR - [4] L. Cheng and J. Liu, "Development and characterization of HEMA-based hydrogels for controlled drug delivery applications", J. Biomed. Mater. Res. Part A, 109 5 800-812 2021, doi: 10.1002/jbm.a.36987 CR - [5] B. Y. Altınok, M. Keskinateş, and M. Bayrakci, "Metal chelate for protein adsorption studies pHEMA-GMA column filling materials including groups preparation", Niğde Ö. H. Univ. J. Eng. Sci., 13 2 1-1 2024, doi: 10.28948-ngumuh.1382364-3501433 CR - [6] Furosemide, "In The Merck Index Online", Merck Index Online, 2022, Retrieved from https://www.rsc.org/Merck-Index CR - [7] R. Kumar and A. Arora, "Evaluation of the antimicrobial efficacy of nifedipine and its potential therapeutic uses", J. Antimicrob. Chemother., 72 5 1326-1331 2017, doi: 10.1093/jac/dkx020 CR - [8] N. Mahmood and R. Raza, "Controlled release and antimicrobial efficacy of furosemide in HEMA-based hydrogels", Int. J. Pharm., 552 1-2 1-10 2018, doi: 10.1016/j.ijpharm.2018.09.031 CR - [9] A. Alvarez-Lueje and S. Scheel, "Synthesis and characterization of methacrylated β-cyclodextrin for drug delivery applications", Eur. J. Pharm. Biopharm., 142 311-319 2019, doi:10.1016/j.ejpb.2019.07.017 CR - [10] Y. Feng and H. Wang, "Release kinetics and antimicrobial properties of nifedipine-loaded hydrogels", Eur. J. Pharm. Sci., 137 104967 2019, doi:10.1016/j.ejps.2019.104967 CR - [11] E. Armagan, M. Keskinates, N. E. Gumus, Z. Aydin, B. Yilmaz, and M. Bayrakci, "Macroalgal (Ulva compressa) Silver Nanoparticles: Their Characterization, Cytotoxicity, and Antibacterial Applications", Turk. J. Fish. Aquat. Sci., 24 9 2024, doi: 10.4194/TRJFAS25612 CR - [12] S. Lu and K. S. Anseth, "Photopolymerization of multilaminated poly (HEMA) hydrogels for controlled release", J. Control. Release, 57 3 291-300 1999, doi:10.1016/S0168-3659(98)00125-4 CR - [13] H. Yuan and Q. Zhang, "Antimicrobial activity of drug-loaded hydrogels: A review of current research", J. Control. Release, 270 15-28 2018, doi:10.1016/j.jconrel.2018.01.019 CR - [14] Niclosamide, "In Drug Information Portal", U.S. Natl. Libr. Med., 2021, Retrieved from CR - [15] R. Santos and A. Oliveira, "Antimicrobial activity of hydrogels containing β-cyclodextrin and its applications in controlled drug delivery", J. Drug Deliv. Sci., Technol. 56 101431 2020, doi:10.1016/j.jddst.2020.101431 CR - [16] T. Nguyen and P. Tran, "Synthesis and evaluation of methacrylated β-cyclodextrin for use in hydrogels and drug delivery systems", Mater. Sci. Eng. C, 101 154-165 2019, doi:10.1016/j.msec.2019.04.067 CR - [17] M. Bayrakci, M. Keskinates, and B. Yilmaz, "Antibacterial, thermal decomposition and in vitro time release studies of chloramphenicol from novel PLA and PVA nanofiber mats", Mater. Sci. Eng. C, 122 111895 2021, doi:10.1016/j.msec.2021.111895 CR - [18] P. Patel and R. Patel, "Pharmacokinetics and release characteristics of furosemide from polymer-based hydrogels", J. Drug Deliv. Sci. Technol., 36 58-64 2016, doi:10.1016/j.jddst.2016.08.005 CR - [19] K. Ozturk and S. Kan, "Antimicrobial activity of methacrylated β-cyclodextrin and its applications in drug delivery systems", Int. J. Pharm., 587 119682 2020, doi:10.1016/j.ijpharm.2020.119682 CR - [20] N. Eczacioglu, B. Yilmaz, Y. Ulusu, and M. Bayrakci, "Recovery and reusability of apounag fluorescence protein from the unconjugated bilirubin complex structure", J. Fluoresc., 30(3) 497-503 2020, doi:10.1007/s10895-020-02519-w CR - [21] B. Yilmaz, N. Aydin, and M. Bayrakci, "Pesticide binding and urea-induced controlled release applications with calixarene naphthalimide molecules by host–guest complexation", J. Environ. Sci. Health, Part B 53(10) 669-676 2018, doi:10.1080/03601234.2018.1474557 CR - [22] H. B. Keskinkaya, E. Deveci, B. Y. Altınok, N. E. Gümüş, E. Ş. O. Aslan, C. Akköz, and S. Karakurt, "HPLC-UV analysis of phenolic compounds and biological activities of Padina pavonica and Zanardinia typus marine macroalgae species", Turk. J. Bot., 47(3) 231-243 2023, doi:10.55730/1300-008X.2761 CR - [23] N. A. Peppas, P. Bures, W. S. Leobandung, and H. Ichikawa, "Hydrogels in pharmaceutical formulations", Eur. J. Pharm. Biopharm., 50(1) 27-46 2000, doi:10.1016/S0939-6411(00)00090-4 CR - [24] C. Miller and M. Martin, "The role of β-cyclodextrin in modifying drug release profiles from hydrogels", Adv. Drug Deliv. Rev., 174 77-88 2022, doi:10.1016/j.addr.2021.12.003 CR - [25] X. Zhao and X. Zhang, "Antibacterial properties of drug-loaded hydrogels: A review", Adv. Drug Deliv. Rev., 127 32-49 2018, doi:10.1016/j.addr.2018.05.001 CR - [26] P. Kumar and S. Sharma, "Antimicrobial activity of niklosamide and its implications for drug delivery systems", J. Antimicrob. Chemother., 75(8) 2155-2161 2020, doi:10.1093/jac/dkaa215 CR - [27] B. Yilmaz, "Release of nifedipine, furosemide, and niclosamide drugs from the biocompatible poly (HEMA) hydrogel structures", Turk. J. Chem., 46(5) 1710-1722 2022, doi:10.55730/1300-0527.3474 CR - [28] R. Bayat, M. Akin, B. Yilmaz, M. Bekmezci, M. Bayrakci, and F. Sen, "Biogenic platinum based nanoparticles: Synthesis, characterization and their applications for cell cytotoxic, antibacterial effect, and direct alcohol fuel cells", Chem. Eng. J. Adv., 14 100471 2023, doi:10.1016/j.ceja.2023.100471 CR - [29] F. Ayhan and S. Özkan, "Gentamicin release from photopolymerized PEG diacrylate and pHEMA hydrogel discs and their in vitro antimicrobial activities", Drug Deliv., 14(7) 433-439 2007, doi:10.1080/10717540701202911 CR - [30] H. Ahmadi, M. Javanbakht, B. Akbari‐Adergani, and M. Shabanian, "Photo‐grafting of β‐cyclodextrin onto the polyethersulfone microfiltration‐membrane: Fast surface hydrophilicity improvement and continuous phthalate ester removal", J. Appl. Polym. Sci., 136(24) 47632 2019, doi:10.1002/app.47632 CR - [31] Y. Liu, Z. Fan, H. Y. Zhang, Y. W. Yang, F. Ding, S. X. Liu, ... and Y. Inoue, "Supramolecular self-assemblies of β-cyclodextrins with aromatic tethers: factors governing the helical columnar versus linear channel superstructures", J. Org. Chem., 68(22) 8345-8352 2003, doi:10.1021/jo034632q CR - [32] C. P. Okoli, G. O. Adewuyi, Q. Zhang, P. N. Diagboya, and Q. Guo, "Mechanism of dialkyl phthalates removal from aqueous solution using γ-cyclodextrin and starch based polyurethane polymer adsorbents", Carbohydr. Polym., 2014, 114 440-449 CR - [33] Y. C. Chung and C. Y. Chen, "Competitive adsorption of a phthalate esters mixture by chitosan bead and α‐cyclodextrin‐linked chitosan bead", Environ. Technol., 30(13) 1343-1350 2009, doi:10.1080/09593330902858914 UR - https://doi.org/10.59313/jsr-a.1620817 L1 - https://dergipark.org.tr/en/download/article-file/4524878 ER -