TY - JOUR T1 - Formulation and characterisation of curcumin loaded PLGA-Tf nanoparticle for increasing the availability of drug in the brain for the management of parkinson’s disease AU - Verma, Deepika AU - Upadhyaya, Kumud PY - 2025 DA - March DO - 10.12991/jrespharm.1626402 JF - Journal of Research in Pharmacy JO - J. Res. Pharm. PB - Marmara University WT - DergiPark SN - 2630-6344 SP - 52 EP - 64 VL - 29 IS - 1 LA - en AB - Curcumin, an extract derived from Curcuma longa, boasts a myriad of medicinal applications. In our current research endeavour, we embarked on the formulation of curcumin nanoparticles via the meticulous micro emulsion precursor method, employing the Box-Behnken 32-level design approach. This involved the manipulation of three independent variables, namely, PLGA-Tf-curcumin concentration, stirring speed, and the concentration of the emulsifying agent (span 80). Our investigation revealed that all three independent variables wielded discernible influence over two crucial dependent variables: encapsulation efficiency (EE) and nanoparticle size. It was against this backdrop that we meticulously prepared a total of seventeen formulations. Among this array, formulation F3 emerged as the best to its remarkable EE (99.7±0.2) and a particle size of 214.7 nm. Delving further into our analysis, we scrutinized additional parameters, including drug content (99.7%) and cumulative percentage release (exceeding 99% within a span of 36 hours), both of which yielded highly favourable results. To elucidate the release kinetics, we harnessed the Zero Order, Higuchi, and Korsmeyer-Peppas kinetic models, each revealing an R-squared (R2) value remarkably close to unity. This signifies an exceptionally controlled and diffusion-driven drug release pattern, manifesting in a spherical manner. In this comprehensive assessment, we also scrutinized various other facets, including λmax (wavelength of maximum absorption), particle size distribution, X-ray diffraction, and FTIR analysis. Collectively, these analytical results reinforced the robust authenticity of our study. KW - Box-Behnken 32-level design KW - PLGA-Tf-curcumin concentration KW - encapsulation efficiency KW - Higuchi model KW - X-ray diffraction CR - 1.Bloem BR, Okun MS, Klein C. Parkinson’s disease. Lancet. 2021; 397 (10291):2284-2303. https://doi.org/10.1016/s0140-6736(21)00218-x CR - 2. Bora KS, Sharma RB. Role of medicinal plants in the management of brain disorders: a review update. Plant Cell Bio technol Mol Biol. 2021; 22(59-60):95-104. http://dx.doi.org/10.9734/jpri/2021/v33i59B34399 CR - 3. Kumar AM, Dogra SH, Vashist HR, Sharma RB. Parkinson’s disease, cause, progression and treatment. Innov. int. j. med. pharm. sci.2019;4(4):1-6. https://doi.org/10.3390%2Fmolecules27092901 CR - 4. Al-Khayri J, Sahana GR, Nagella P, Joseph VS, Alessa FM, Alessa FM . Flavonoids as Potential Anti-Inflammatory Molecules: A Review. Mol.. 2022; 27(9): 1-24. https://doi.org/10.3390%2Fmolecules27092901 CR - 5. Obeid MA, Alsaadi M, Aljabali AA. Recent updates in curcumin delivery. J Liposome Res. 2023 ;33 (1):53-64. https://doi.org/10.1080/08982104.2022.2086567 CR - 6. diagnosis Lv H, Wang Y, Yang X, Ling G, Zhang P. Application of curcumin nano formulations in Alzheimer’s disease: prevention, and treatment. https://doi.org/10.1080/1028415X.2022.2084550 CR - 7. Nutr Neuro sci. 2023; 26 (8):727-742. Sharma RB, Sharma R, Bora KS. Role of medicinal plants for the treatment of Alzheimer’s disease. J Pharm Res Int. 2021;33(59B):422-431. http://doi.org/10.9734/jpri/2021/v33i59B34399 8. Sharma R, Ashraf R, Kaur Gill AK, Sharma RB. Design, preparation and evaluation of nanoparticles of 5-flurouracil for the targeted delivery to treat colon cancer. Mater Today Proc. 2022;48:1427-1430. http://doi.org./ 10.1016/j.matpr.2021.09.200 CR - 9. Hari SK, Gauba A, Shrivastava N, Tripathi RM, Jain SK, Pandey AK. Polymeric micelles and cancer therapy: an ingenious multimodal tumor-targeted drug delivery system. Drug Deliv and Transl Res. 2023 ;13(1):135-163. https://doi.org/10.1007/s13346-022-01197-4 CR - 10. Elisetti SK, Arora V, Sharma RB. Polymers for designing 3D Printed Pharmaceutical Products. J. Res. Pharm. 2023 ;27:576-594. http://dx.doi.org/10.29228/jrp.341 CR - 11. Gómez-Estaca J, Gavara R, Hernández-Muñoz P. Encapsulation of curcumin in electrosprayedgelatin microspheres enhances its bioaccessibility and widens its uses in food applications. Innov Food Sci EmergTechnol. 2015;29:302-307. https://doi.org/10.1016/j.ifset.2015.03.004 CR - 12. Andrés A, Rosés M, Ràfols C, Bosch E, Espinosa S, Segarra V, Huerta JM. Setup and validation of shake-flask procedures for the determination of partition coefficients (logD) from low drug amounts. EurJ Pharm Sci. 2015 ;76:181 191. https://doi.org/10.1016/j.ejps.2015.05.008 CR - 13. Qader SW, Suvitha A, Ozdemir M, Benjamin I, NSAASR, Akem MU, Frank AE, Eluwa EC.Investigating the physicochemical properties and pharmacokinetics of curcumin employing density functional theory and gastric protection. Chem Phys Impact. 2022;5:1-11. https://doi.org/10.1016/j.chphi.2022.100130 CR - 14. Liu Y, Yang Z, Du J, Yao X, Lei R, Zheng X, Liu J,Hu H, Li H. Interaction of curcumin with intravenous immunoglobulin: A fluorescence quenching and Fourier transformation infrared spectroscopy study.Immunobiol. 2008 ;213(8):651-661. https://doi.org/10.1016/j.imbio.2008.02.003 CR - 15. Li H, Pan T, Cui Y, LiXiaxia, GaoJiefang, Yang W, Shen S. Improved oral bioavailability of poorly water-soluble glimepiride by utilizing microemulsion using technique. Int J Nanomedicine. 2016;11: 3777-3788. https://doi.org/10.2147/IJN.S105419 CR - 16. Katageri S. B., Sharma R. Development and Optimization of Self-Nanoemulsifying tablet dosage form of Nateglinide Box–Behnken design. J Pharm Sci Bioscientific Res. 2016 6(1):124-136. https://api.semanticscholar.org/CorpusID:21846752 CR - 17. Massimino LC, Faria HAM, Yoshioka SA. Curcumin bioactive nanosizing: increase of bioavailability. Ind Crops Prod. 2017 ;109: 493-497. https://doi.org/10.1016/j.indcrop.2017.09.001 CR - 18. Bhawana BRK, Basniwal RK, Buttar HS, Jain VK, Jain N. Curcumin nanoparticles: preparation, characterization, and antimicrobial study. J Agric Food Chem. 2011 ;59(5):2056-2061. https://doi.org/10.1021/jf104402t CR - 19. Sun W, Zou Y, Guo Y, Wang L, Xiao X, Sun R, Zhao K. Construction and characterization of curcumin nanoparticles system. J Nano part Res. 20;16 (3):1-9. https://doi.org/10.1007/s11051-014-2317-2 CR - 20. Araki K, Yoshizumi M, Kimura S, Tanaka A, Inoue D, Furubayashi T, Sakane T, Enomura M. Application of a micro reactor to pharmaceutical manufacturing: preparation of amorphous curcumin nanoparticles and controlling the crystallinity of curcumin nanoparticles by ultrasonic treatment. AAPS Pharm SciTech. 2019; 21(1):17. https://doi.org/10.1208/s12249-019-1418-8 CR - 21. Sarfaraz M, Dhruv RK, Doddayya H, Khan KAA. Factorial design based optimization of hydroxyzine hydrochloride fast dissolving tablets. Indian J. Pharm. Sci. 2020;82(5):787-798. https://doi.org/10.36468/pharmaceutical sciences. CR - 22. Danafar H. Study of the composition of poly caprolactone/poly (ethylene glycol)/poly caprolactone copolymer and drug-to-polymer ratio on drug loading efficiency of curcumin to nanoparticles. Jundishapur J Nat Pharm Prod. 2017 ;12(1):1-9. https://doi.org/10.5812/jjnpp.34179 CR - 23. Sharma RB, Kumarı C, Kapıla A, Bora KS, Sharma A. Formulation and in-vitro evaluation of emulsion loaded topical gel for the enhancement of diffusion through the skin for the treatment of skin irritation. J Res Pharm. 2022; 26 (5):1112-1124.https://doi.org/10.29228/jrp.207 CR - 24. Shaikh J, Ankola DD, Beniwal V, Singh D, Kumar MN. Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur J Pharm Sci. 2009 ;37 (3-4):223-230. https://doi.org/10.1016/j.ejps.2009.02.019 UR - https://doi.org/10.12991/jrespharm.1626402 L1 - https://dergipark.org.tr/en/download/article-file/4549807 ER -