TY - JOUR T1 - FABRICATION OF POLYVINYL ALCOHOL NANOFIBROUS WEBS CONTAINING MOMETASONE FUROATE MONOHYDRATE AND MELATONIN LOADED SILICA XEROGELS FOR TOPICAL DRUG DELIVERY: IN VITRO RELEASE STUDY TT - TOPİKAL İLAÇ SALIMI İÇİN MOMETAZON FUROAT MONOHIDRAT VE MELATONİN YÜKLÜ SİLİKA KSEROJEL İÇEREN POLİVİNİL ALKOL NANOLİF MEMBRAN ÜRETİMİ: IN VITRO SALIM ÇALIŞMASI AU - Karagüzel Kayaoğlu, Burçak AU - Palak, Handan AU - Gürbüz Yurtsever, Aslı AU - Kalaoğlu Altan, Özlem İpek AU - Erdal, Meryem Sedef PY - 2025 DA - June Y2 - 2025 DO - 10.7216/teksmuh.1626996 JF - Tekstil ve Mühendis PB - Tekstil Mühendisleri Odası WT - DergiPark SN - 1300-7599 SP - 95 EP - 104 VL - 32 IS - 138 LA - en AB - A key approach to the controlled release of bioactive molecules is the development of drug delivery systems that minimize side effects and precisely regulate drug release. A strategy for enhancing the drug release properties of drug delivery systems involves loading drugs into a carrier before their incorporation into the system. Xerogels can be utilized since they are porous, and can be synthesized through ambient pressure drying of precursor wet-gels, offering a cost-effective, facile, and sustainable approach. In this study, polyvinyl alcohol (PVA)/drug loaded-silica xerogel nanofibrous webs were fabricated via electrospinning. Xerogels were synthesized via sol-gel polymerization, loaded with mometasone furoate monohydrate and melatonin, then incorporated into PVA solutions and processed into PVA/xerogel/drug nanofibrous webs. The webs were characterized in terms of their morphological and chemical properties via scanning electron microscope and Fourier transform infrared spectrometer, respectively, and as well as drug release profiles. Morphological analysis confirmed the successful incorporation of drug-loaded xerogels within nanofibers without significant change in morphological structure, while chemical analysis identified distinct peaks corresponding to the specific bands of PVA, xerogel, and drugs. In vitro drug release studies demonstrated that the release of MLT was 50.289% ± 0.462% and 55.080% ± 2.955% for the 1:1 and 1:2 MLT: Xerogel formulations, respectively, whereas the control formulation (1:0 MLT: Xerogel) exhibited a release of 66.295% ± 3.293% at first 24h. The presence of xerogel resulted in a slower MLT release compared to the xerogel-free formulation. The findings highlight the potential of xerogel-incorporated nanofibrous webs as effective carriers for controlled topical drug delivery applications, i.e., wound dressing. KW - Topical drug delivery system KW - xerogel KW - mometasone furoate monohydrate KW - melatonin KW - electrospinning KW - PVA N2 - Biyolojik aktif moleküllerin kontrollü salımına yönelik temel yaklaşımlardan biri, yan etkileri en aza indirirken ilaç salımını hassas bir şekilde düzenleyen ilaç salım sistemlerinin geliştirilmesidir. İlaç salım sistemlerinin ilaç salım özelliklerini iyileştirmeye yönelik stratejilerden biri, ilaçların sistem içine dahil edilmeden önce bir taşıyıcıya yüklenmesidir. Gözenekli yapıları ve öncül ıslak jellerin ortam basıncında kurutulmasıyla sentezlenebilmeleri nedeniyle, kserojeller düşük maliyetli, kolay uygulanabilir ve sürdürülebilir bir yöntem sunarak ilaç taşıma sistemlerinde kullanılabilirler. Bu çalışmada, elektro-eğirme yöntemi kullanılarak polivinil alkol (PVA)/ilaç yüklü silika kserojel nanolif yüzeyler üretilmiştir. Kserojeller sol-jel polimerizasyonu yoluyla sentezlenmiş, mometazon furoat monohidrat ve melatonin ile yüklenmiş, ardından PVA çözeltilerine dahil edilerek PVA/kserojel/ilaç nanolif yüzeyler geliştirilmiştir. Üretilen yüzeylerin morfolojik ve kimyasal özellikleri sırasıyla taramalı elektron mikroskobu ve Fourier dönüşümlü kızılötesi spektrometresi ile karakterize edilmiş, ayrıca ilaç salım profilleri değerlendirilmiştir. Morfolojik analizler, ilaç yüklü kserojellerin nanoliflere başarılı bir şekilde entegre edildiğini ve morfolojik yapıda belirgin bir değişiklik olmadığını doğrulamıştır. Kimyasal analizler ise PVA, kserojel ve ilaçlara özgü belirgin piklerin varlığını göstermiştir. In vitro ilaç salım çalışmaları, 24 saat sonunda MLT salımının 1:1 ve 1:2 MLT:kserojel formülasyonları için sırasıyla %50.289 ± %0.462 ve %55.080 ± %2.955 olduğunu, kontrol formülasyonu (1:0 MLT:kserojel) için ise %66.295 ± %3.293 salım gerçekleştiğini göstermiştir. Kserojel varlığı, kserojel içermeyen formülasyona kıyasla MLT’nin daha yavaş salınmasını sağlamıştır. Elde edilen bulgular, kserojel içeren nanolifli ağların kontrollü topikal ilaç salımı uygulamaları, örneğin yara örtüleri, için etkili taşıyıcılar olarak potansiyelini ortaya koymaktadır. CR - De Araujo, D.R., Padula, C., (2023), Topical Drug Delivery: Innovative Controlled Release Systems, Pharmaceutics, 15, 1716. https://doi.org/10.3390/pharmaceutics15061716 CR - Mohammed Y., Holmes A., Kwok P. C. L., Kumeria T., Namjoshi S., Imran M., Matteucci, L., Ali, M., Tai, W., Benson, H. A. E., Roberts, M. S. (2022), Advances and Future Perspectives in Epithelial Drug Delivery, Advanced Drug Delivery Reviews, 186, 114293. https://doi.org/10.1016/j.addr.2022.114293 CR - Goyal, R., Macri, L.K., Kaplan, H.M., Kohn, J., (2016), Nanoparticles and Nanofibers for Topical Drug Delivery, Journal of Controlled Release, 240, 77-92. https://doi.org/10.1016/ j.jconrel.2015.10.049 CR - Huang, C., Thomas, N.L., (2018), Fabricating porous poly(lactic acid) fibres via electrospinning, European Polymer Journal, 99: 464–476. https://doi.org/10.1016/j.eurpolymj.2017.12.025 CR - Jain, R., Shetty, S., Yadav, K.S., (2020), Unfolding the Electrospinning Potential of Biopolymers for Preparation of Nanofibers, Journal of Drug Delivery Science and Technology, 57, 101604, https://doi.org/10.1016/j.jddst.2020.101604 CR - Verreck, G., Chun, I., Rosenblatt, J., Peeters, J., Dijck, A.V., Mensch, J., Noppe, M., Brewster, M.E., (2003), Incorporation of Drugs in an Amorphous State Into Electrospun Nanofibers Composed of A Water-Insoluble, Nonbiodegradable Polymer, Journal of Controlled Release, 92, 349–360. https://doi.org/ 10.1016/ S0168-3659(03)00342-0 CR - Macri, L.K., Sheihet, L., Singer, A.J., Kohn, J., Clark, R.A., (2012), Ultrafast and Fast Bioerodible Electrospun Fiber Mats for Topical Delivery of A Hydrophilic Peptide, Journal of Controlled Release, 161, 813–820. https://doi.org/10.1016/j.jconrel.2012.04.035 CR - Fathollahipour, S., Mehrizi, A.A., Ghaee, A., Koosha, M., (2015), Electrospinning of PVA/Chitosan Nanocomposite Nanofibers Containing Gelatin Nanoparticles as A Dual Drug Delivery System, Journal of Biomedical Materials Research Part A, 103, 3852. https://doi.org/10.1002/jbm.a.35529 CR - Zhang, X., Tang, K. & Zheng, X., (2016), Electrospinning and Crosslinking of COL/PVA Nanofiber-microsphere Containing Salicylic Acid for Drug Delivery, Journal of Bionic Engineering, 13, 143–149 https://doi.org/10.1016/S1672-6529(14)60168-2 CR - Vashisth, P., Pruthi, V., (2016), Synthesis and Characterization of Crosslinked Gellan/PVA Nanofibers for Tissue Engineering Application, Materials Science and Engineering: C, 67, 304-312, https://doi.org/10.1016/j.msec.2016.05.049 CR - Meera Moydeen, A., Syed Ali Padusha, M., Aboelfetoh, E.F., Al-Deyab, S.S., H. El-Newehy, M., (2018), Fabrication of Electrospun Poly(Vinyl Alcohol)/Dextran Nanofibers via Emulsion Process as Drug Delivery System: Kinetics And In Vitro Release Study, International Journal of Biological Macromolecules, 116, 1250-1259, https://doi.org/10.1016/j.ijbiomac.2018.05.130 CR - Cui, Z., Zheng, Z., Lin, L., Si, J., Wang, Q., Peng, X., Chen, W., (2018), Electrospinning and Crosslinking of Polyvinyl Alcohol/Chitosan Composite Nanofiber for Transdermal Drug Delivery, Advances of Polymer Technology, 37, 1917–1928. https://doi.org/10.1002/adv.21850 CR - Rahmani, F., Ziyadi, H., Baghali, M., Luo, H., Ramakrishna, S., (2021), Electrospun PVP/PVA Nanofiber Mat as a Novel Potential Transdermal Drug-Delivery System for Buprenorphine: A Solution Needed for Pain Management, Applied Sciences, 11, 2779. https://doi.org/10.3390/app11062779 CR - Acik, G., Turhan Cakir, N., Altinkok, C., (2024), Development of Organosoluble, Quaternized and Naproxen Sodium-Loaded Poly(Vinyl Alcohol)-Based Electrospun Nanofibers, European Polymer Journal, 221, 113565, https://doi.org/10.1016/j.eurpolymj. 2024.113565 CR - Wang, W., Wang, Y., Zhao, W., Zhao, C., (2022), A Straightforward Approach towards Antibacterial and Anti-Inflammatory Multifunctional Nanofiber Membranes with Sustained Drug Release Profiles, Macromolecular Bioscience, 22, 11, 2200150, https://doi.org/10.1002/mabi.202200150 CR - Gutschmidt, D., Hazra, R.S., Zhou, X., Xu, X., Sabzi, M., Jiang, L., (2021), Electrospun, Sepiolite-Loaded Poly(Vinyl Alcohol)/Soy Protein Isolate Nanofibers: Preparation, Characterization, and Their Drug Release Behavior, International Journal of Pharmaceutics, 594, 120172, https://doi.org/10.1016/ j.ijpharm. 2020.120172 CR - Pei, J., Yan, Y., Palanisamy, C. P., Jayaraman, S., Natarajan, P. M., Umapathy, V. R., Gopathy, S., Roy, J. R., Sadagopan, J. C., Thalamati, D., Mironescu, M., (2024), Materials-Based Drug Delivery Approaches: Recent Advances and Future Perspectives, Green Processing and Synthesis, 13, 1, 20230094. https://doi.org/10.1515/gps-2023-0094 CR - Gizli, N., Sert Çok, S., Koç, F., (2022), Chapter 7 - Aerogel, xerogel, and cryogel: Synthesis, surface chemistry, and properties—Practical environmental applications and the future developments, Editor(s): Dimitrios Giannakoudakis, Lucas Meili, Ioannis Anastopoulos, Advanced Materials for Sustainable Environmental Remediation, Elsevier, 195-229, https://doi.org/ 10.1016/B978-0-323-90485-8.00021-7 CR - Cuce, E., Mert Cuce, P., Wood, C.J., Riffat, B.S., (2014), Toward Aerogel Based Thermal Superinsulation In Buildings: A Comprehensive Review, Renewable and Sustainable Energy Reviews, 34, 273-299, https://doi.org/10.1016/j.rser.2014.03.017 CR - Long, J.W., Swider‐Lyons, K.E., Stroud, R. M., Rolison, D.R., (2000), Design of Pore and Matter Architectures in Manganese Oxide Charge‐Storage Materials, Electrochemical and Solid-State Letters, 3, 10, 453. DOI: 10.1149/1.1391177 CR - Reim, M., Beck, A., Körner, W., Petricevic, R., Glora, M., Weth, M., Schliermann, T., Fricke, J., Schmidt, Ch, Pötter, F.J., (2002), Highly Insulating Aerogel Glazing For Solar Energy Usage, Solar Energy, 72, 1, 21-29, https://doi.org/10.1016/S0038-092X(01) 00086-X CR - Amonette, J.E., Matyáš, J., (2017), Functionalized Silica Aerogels for Gas-Phase Purification, Sensing, and Catalysis: A Review, Microporous and Mesoporous Materials, 250, 100-119, https://doi.org/10.1016/j.micromeso.2017.04.055 CR - García-González, C.A., Sosnik, A., Kalmár, J., De Marco, I., Erkey, C., Concheiro, A., Alvarez-Lorenzo, C., (2021), Aerogels In Drug Delivery: From Design To Application, Journal of Controlled Release, 332, 40-63, https://doi.org/10.1016/j.jconrel.2021.02.012 CR - Torres-Rodriguez, J., Gutierrez-Cano, V., Menelaou, M., Kaštyl, J., Cihlář, J., Tkachenko, S., González, J.A., Kalmár, J., Fábián, I., Lázár, I., Čelko, L., Kaiser, J., (2019), Rare-Earth Zirconate Ln2Zr2O7 (Ln: La, Nd, Gd, and Dy) Powders, Xerogels, and Aerogels: Preparation, Structure, and Properties, Inorganic Chemistry, 58, 21, 14467-14477, https://doi.org/10.1021/ acs.inorgchem.9b01965 CR - Tüysüz, H., Schüth, F., (2012), Chapter 2 - Ordered Mesoporous Materials as Catalysts, Editor(s): Bruce C. Gates, Friederike C. Jentoft, Advances in Catalysis, Academic Press, 55, 127-239, https://doi.org/10.1016/B978-0-12-385516-9.00002-8 CR - Zhou, H.J., Teng, S.H., Zhou, Y.B., Qian, H.S., (2020), Green Strategy to Develop Novel Drug-Containing Poly (ε-Caprolactone)-Chitosan-Silica Xerogel Hybrid Fibers for Biomedical Applications, Journal of Nanomaterials, 6659287. https: //doi. org/10.1155/2020/6659287 CR - Rajalekshmy, G., Rekha, M., (2021), Synthesis and Evaluation of An Alginate-Methacrylate Xerogel for Insulin Delivery Towards Wound Healing Applications, Therapeutic Delivery, 12, 215–234. https://doi.org/10.4155/tde-2020-0128 CR - Rafati, A., Ebadi, A., Bavafa, S., Nowroozi, A., (2018), Kinetic Study, Structural Analysis and Computational Investigation of Novel Xerogel Based on Drug-PEG/SiO2 for Controlled Release of Enrofloxacin, Journal of Molecular Liquids, 266, 733–742. https://doi.org/10.1016/j.molliq.2018.06.104 CR - Križman, K., Novak, S., Kristl, J., Majdič, G., Drnovšek, N., (2021), Long-Acting Silk Fibroin Xerogel Delivery Systems for Controlled Release of Estradiol, Journal of Drug Delivery Science and Technology, 65,102701. https://doi.org/10.1016/j.jddst. 2021.102701 CR - Chen, X.S., Carillo, M., Haltiwanger, R.C., Bradley, P., (2005), Solid State Characterization of Mometasone Furoate Anhydrous and Monohydrate Forms, Journal of Pharmaceutical Sciences, 94, 11, 2496-2509, https://doi.org/10.1002/jps.20470 CR - Rivelli, G.G., Perez, A.C., Silva, P.H.R., de Lima Gomes, E.C., de Souza Moreira, C.P., Tamashiro, E., Valera, F.C.P., Anselmo-Lima, W.T., Pianetti, G.A., Silva-Cunha, A., (2021), Biodegradable Electrospun Nanofibers: A New Approach for Rhinosinusitis Treatment, European Journal of Pharmaceutical Sciences, 163, 105852. https://doi.org/10.1016/j.ejps.2021.105852 CR - Bora, N. S., Mazumder, B., Mandal, S., Bhutia, Y. D., Das, S., Karmakar, S., Chattopadhyay, P., Dwivedi, S. K., (2019), Protective Effect of A Topical Sunscreen Formulation Fortified With Melatonin Against UV-Induced Photodermatitis: An Immunomodulatory Effect Via NF-Κb Suppression, Immunopharmacology and Immunotoxicology, 41, 1, 130–139. https://doi.org/10.1080/08923973.2019.1566358 CR - Marto, J., Ascenso, A., Gonçalves, L. M., Gouveia, L. F., Manteigas, P., Pinto, P., Oliveira, E., Almeida, A. J., Ribeiro, H. M., (2016), Melatonin-Based Pickering Emulsion for Skin’s Photoprotection, Drug Delivery, 23, 5, 1594–1607. https://doi.org/ 10.3109/10717544.2015.1128496 CR - Mirmajidi, T., Chogan, F., Rezayan, A.H., Sharifi, A.M., (2021), In Vitro and In Vivo Evaluation of A Nanofiber Wound Dressing Loaded With Melatonin, International Journal of Pharmaceutics, 596, 120213, https://doi.org/10.1016/j.ijpharm.2021.120213 CR - Romeo, A., Kazsoki, A., Omer, S., Pinke, B., Mészáros, L., Musumeci, T., Zelkó, R., (2023), Formulation and Characterization of Electrospun Nanofibers for Melatonin Ocular Delivery, Pharmaceutics, 15, 1296. https://doi.org/10.3390/ pharmaceutics15041296 CR - Kortesuo, P., Ahola, M., Karlsson, S., Kangasniemi, I., Yli-Urpo, A., Kiesvaara, J., (2000), Silica Xerogel As An Implantable Carrier for Controlled Drug Delivery—Evaluation of Drug Distribution and Tissue Effects After Implantation, Biomaterials, 21, 2, 193-198, https://doi.org/10.1016/S0142-9612(99)00148-9 CR - DrugBank Online, Mometasone furoate monohydrate, https://go.drugbank.com/salts/DBSALT001244, 21/01/2025. CR - Drug Bank Online, Melatonin, https://go.drugbank.com/drugs/ DB01065, 21/01/2025. CR - Bryans, T.R., Brawner, V.L., Quitevis, E.L., (2000), Microstructure and Porosity of Silica Xerogel Monoliths Prepared by the Fast Sol-Gel Method, Journal of Sol-Gel Science and Technology 17, 211–217. https://doi.org/10.1023/A:1008711921746 CR - Yue, W., Liang, J., Wang, H. et al., (2022), Preparation and Properties of Enzyme-Carrying Silica Xerogel Based on TMOS/MTMS Co-Precursors, Journal of Sol-Gel Science and Technology, 102, 400–411. https://doi.org/10.1007/s10971-022-05739-7. CR - Altuntaş, E., Yener, G., (2017), Formulation and Evaluation of Thermoreversible In Situ Nasal Gels Containing Mometasone Furoate for Allergic Rhinitis, AAPS PharmSciTech, 18, 2673–2682 https://doi.org/10.1208/s12249-017-0747-8 CR - Mesut, B., Tok, Y. P., Alkan, B., Vefai, M. K., Al-Mohaya, M., Özsoy, Y., (2023), Effect of Mannitol Particle Size on Melatonin Dissolution and Tablet Properties Using a Quality by Design Framework, Dissolution Technology, 2, 12-21. https://doi.org/ 10.14227/DT300123P12 CR - Mansur, H.S., Sadahira, C.M., Souza, A.N., Mansur, A.A.P., (2008), FTIR Spectroscopy Characterization of Poly (Vinyl Alcohol) Hydrogel With Different Hydrolysis Degree and Chemically Crosslinked With Glutaraldehyde, Materials Science and Engineering: C, 28, 4, 539-548, https://doi.org/10.1016/ j.msec.2007.10.088 CR - Topal, B., Cetin Altindal, D., Gümüşderelioğlu, M., (2015), Melatonin/Hpβcd Complex: Microwave Synthesis, Integration with Chitosan Scaffolds and Inhibitory Effects On MG-63CELLS, International Journal of Pharmaceutics, 496. https://doi.org/10.1016/j.ijpharm.2015.11.028 CR - Li, J., Wu, W., Yang, H., Wang, X., Wang, X., Sun, C., Hu, Z., (2019), Rigid Silica Xerogel/Alumina Fiber Composites and Their Thermal Insulation Properties, Journal of Porous Materials, 26, 1177–1184. https://doi.org/10.1007/s10934-018-0711-3 CR - Barkat K., Ahmad M., Usman Minhas M., Khalid I., Nasir B., (2018), Development and Characterization of Ph‐Responsive Polyethylene Glycol‐Co‐Poly (Methacrylic Acid) Polymeric Network System for Colon Target Delivery of Oxaliplatin: Its Acute Oral Toxicity Study, Advances in Polymer Technology, 37, 6, 1806–1822. https://doi.org/10.1002/adv.21840 CR - Bakshi, S., Pandey, P., Mohammed, Y., Wang, J., Sailor, M.J., Popat, A., Parekh, H.S., Kumeria, T., (2023), Porous Silicon Embedded in a Thermoresponsive Hydrogel for Intranasal Delivery of Lipophilic Drugs To Treat Rhinosinusitis, Journal of Controlled Release, 363, 452-463. https://doi.org/10.1016/j.jconrel. 2023.09.045 CR - Thakker, K., (2020), Topicals and Transdermals, In Vitro Drug Release Testing of Special Dosage Forms, Edited by Nikoletta Fotaki and Sandra Klein, John Wiley & Sons Ltd, UK, 155-210 CR - Deng, L., Hou, M., Lv, N., Zhou, Q., Hua, X., Hu, X., Ge, X., Zhu, X., Xu, Y., Yang, H., Chen, X., Liu, H., He, F., (2024), Melatonin-Encapsuled Silk Fibroin Electrospun Nanofibers Promote Vascularized Bone Regeneration Through Regulation of Osteogenesis-Angiogenesis Coupling, Materials Today Bio, 2, 25, 100985. https://doi.org/10.1016/j.mtbio.2024.100985 CR - Dash, S., Murthy, P.N., Nath, L., Chowdhury, P., (2010), Kinetic Modeling on Drug Release from Controlled Drug Delivery Systems, Acta Poloniae Pharmaceutica Drug Research, 67, 3, 217-223. PMID: 20524422. UR - https://doi.org/10.7216/teksmuh.1626996 L1 - https://dergipark.org.tr/en/download/article-file/4552266 ER -