TY - JOUR T1 - A Bibliometric Analysis on Bio-Inspired Responsive Facades AU - Bilmez, Büşra AU - Maden, Feray PY - 2025 DA - December Y2 - 2025 DO - 10.35378/gujs.1629541 JF - Gazi University Journal of Science PB - Gazi University WT - DergiPark SN - 2147-1762 SP - 1566 EP - 1595 VL - 38 IS - 4 LA - en AB - The implementation of responsive facades offers a promising strategy for reducing operational energy use while enhancing indoor comfort. These facades dynamically adjust their configurations, mirroring adaptive behaviors observed in living organisms. The bio-inspired responsive facade approach integrates principles from biomimicry and responsive architecture to develop systems that react intelligently to environmental stimuli. This study aims to analyze existing literature to identify key developments and trends in bio-inspired responsive facades. The research is conducted in three main phases. First, the study establishes its conceptual framework. Second, a comprehensive bibliometric analysis is conducted using the Web of Science database, employing science mapping techniques via VOSviewer and the Bibliometrix R package. This analysis uncovers major trends, turning points, influential authors, leading journals, and significant conferences, offering a clear overview of the research landscape. In the third phase, 33 facade designs are selected from 141 identified publications for comparative analysis. Each design is examined based on material, control systems, movement mechanisms, and functional objectives. The review explores their natural inspirations, responsive stimuli, and material strategies to derive insights for future innovation. Results reveal that 45% of designs focus on improving thermal comfort in hot climates, often utilizing active systems or smart materials. Folding and rotating mechanisms are the most common modes of movement. However, only five designs progress beyond the conceptual phase, highlighting the need for practical implementation. By mapping the evaluation of this interdisciplinary field, the study establishes a systematic foundation for advancing bio-inspired responsive facade research. KW - Bio-inspired facades KW - Biomimicry in architecture KW - Energy-efficient design KW - Kinetic facades KW - Responsive facade systems CR - [1] International Energy Agency. “World Energy Outlook 2024” Report, (2024). CR - [2] Hubert, T., Dugué, A., Vogt Wu, T., Aujard, F., and Bruneau, D., “An adaptive building skin concept resulting from a new bioinspiration process: Design, prototyping, and characterization”, Energies, 15(3): 891, (2022). DOI: https://doi.org/10.3390/en15030891 CR - [3] El Houda, A. N., and Mohamed, D., “Advanced building skins inspired from plants adaptation strategies to environmental stimuli: A review”, International Conference on Applied Smart Systems (ICASS), Médéa, 1-7, (2018). DOI: 10.1109/ICASS.2018.8651949 CR - [4] Kızılörenli, E., and Maden, F., “Modular responsive facade proposals based on semi-regular and demi-regular tessellation: Daylighting and visual comfort”, Frontiers of Architectural Research, 12(4): 601-612, (2023). DOI: https://doi.org/10.1016/j.foar.2023.02.005 CR - [5] Pawlyn, M., Biomimicry in Architecture 2nd ed., RIBA Publishing, Newcastle, (2019). DOI: https://doi.org/10.4324/9780429346774 CR - [6] Park, J. J., and Dave, B., “Bio-inspired responsive façades”, 2nd Central European Symposium of Building Physics (CESBP), Vienna, (2013). CR - [7] Kuru, A., Oldfield, P., Bonser, S., and Fiorito, F., “Biomimetic adaptive building skins: Energy and environmental regulation in buildings”, Energy and Buildings, 205, (2019). DOI: https://doi.org/10.1016/j.enbuild.2019.109544 CR - [8] Soliman, M. E., and Bo, S., “An innovative multifunctional biomimetic adaptive building envelope based on a novel integrated methodology of merging biological mechanisms”, Journal of Building Engineering, 76, (2023). DOI: https://doi.org/10.1016/j.jobe.2023.106995 CR - [9] Meena, A. K., D’Costa, D., Bhavsar, S., Kshirsagar, M., and Kulkarni, S., “Applications of biomimicry in construction and architecture: A bibliometric analysis”, Library Philosophy and Practice, 1-17,(2021). CR - [10] Shashwat, S., Zingre, K. T., Thurairajah, N., Kumar, D. K., Panicker, K., Anand, P., and Wan, M. P., “A review on bioinspired strategies for an energy-efficient built environment.” Energy and Buildings, 296, (2023). DOI: https://doi.org/10.1016/j.enbuild.2023.113382 CR - [11] Varshabi, N., Arslan Selçuk, S., and Mutlu Avinç, G., “Biomimicry for energy-efficient building design: A bibliometric analysis”, Biomimetics, 7(1): 21, (2022). DOI: https://doi.org/10.3390/biomimetics7010021 CR - [12] Bem, G. D., and Krüger, E. L., “Responsive architecture: a bibliometric analysis of scientific production”, Ambiente Construído, 22, 31-45, (2022). CR - [13] Gonçalves, M., Figueiredo, A., Almeida, R. M. S. F., and Vicente, R., “Dynamic façades in buildings: A systematic review across thermal comfort, energy efficiency and daylight performance”, Renewable and Sustainable Energy Reviews, 199, (2024). DOI: https://doi.org/10.1016/j.rser.2024.114474 CR - [14] Aria, M., and Cuccurullo, C., “Bibliometrix: An R-tool for comprehensive science mapping analysis”, Journal of Informetrics, 11(4): 959-975, (2017). DOI: https://doi.org/10.1016/j.joi.2017.08.007 CR - [15] Dutt, F., and Das, S., “Computational design of a bio inspired responsive architectural Façade system”, International Journal of Architectural Computing, 10(4): 613-633, (2012). DOI: https://doi.org/10.1260/1478-0771.10.4.613 CR - [16] Ladurner, G., Gabler, M., Menges, A., and Knippers, J., “Interactive form-finding for biomimetic fibre structures”, Education and Research in Computer Aided Architectural Design in Europe Computation and Performance (eCAADe), 509-520, (2012). DOI: https://doi.org/10.52842/conf.ecaade.2012.2.519 CR - [17] Menges, A., and Knippers, J., “Fibrous tectonics”, Architectural Design, 85(5): 40-47, (2015). DOI: https://doi.org/10.1002/ad.1952 CR - [18] Grun, T. B., Dehkordi, LKF., Schwinn, T., Sonntag, D., von Scheven, M., Bischoff, M., Knippers, J., and Nebelsick, J. H., The skeleton of the sand dollar as a biological role model for segmented shells in building construction: a research review. In Biomimetic Research for Architecture and Building Construction: Biological Design and Integrative Structures, 217-242, (2016). DOI: https://doi.org/10.1007/978-3-319-46374-2_11 CR - [19] Weigele, J., Schloz, M., Schwinn, T., Reichert, S., LaMagna, R., Waimer, F., Knippers, J., and Menges, A., “Fibrous Morphologies”, Education and Research in Computer Aided Architectural Design in Europe Computation and Performance (eCAADe), 549-558, (2013). CR - [20] Knippers, J., La Magna, R., Menges, A., Reichert, S., Schwinn, T., and Waimer, F., “ICD/ITKE research pavilion 2012: coreless filament winding based on the morphological principles of an arthropod exoskeleton”, Architectural Design, 85(5): 48-53, (2015). DOI: https://doi.org/10.1002/ad.1953 CR - [21] Dörstelmann, M., Knippers, J., Menges, A., Parascho, S., Prado, M., and Schwinn, T., “ICD/ITKE Research Pavilion 2013‐14: Modular Coreless Filament Winding Based on Beetle Elytra”, Architectural Design, 85(5): 54-59, (2015). DOI: https://doi.org/10.1002/ad.1954 CR - [22] Dörstelmann, M., Knippers, J., Koslowski, V., Menges, A., Prado, M., Schieber, G., and Vasey, L., “ICD/ITKE research pavilion 2014–15: Fibre placement on a pneumatic body based on a water spider web”, Architectural Design, 85(5): 60-65, (2015). DOI: https://doi.org/10.1002/ad.1955 CR - [23] Grun, T. B., von Scheven, M., Geiger, F., Schwinn, T., Sonntag, D., Bischoff, M., Knippers, J, and Nebelsick, J. H., Building principles and structural design of sea urchins: Examples of bio-inspired constructions. In Biomimetics for Architecture: Learning from Nature, Birkhäuser, Basel, 104-115, (2019). DOI: https://doi.org/10.1515/9783035617917-014 CR - [24] Speck, T., Knippers, J., and Speck, O., “Self‐X materials and structures in nature and technology: Bio‐inspiration as a driving force for technical innovation”, Architectural Design, 85(5): 34-39, (2015). DOI: https://doi.org/10.1002/ad.1951 CR - [25] Knippers, J., Schmid, U., and Speck, T., Biomimetics for architecture: learning from nature, Birkhäuser, Basel, (2019). DOI: https://doi.org/10.1515/9783035617917 CR - [26] Poppinga, S., Körner, A., Sachse, R., Born, L., Westermeier, A., Hesse, L., Knippers, J., Bischoff, M., Gresser, GT., and Speck, T., Compliant mechanisms in plants and architecture. In Biomimetic Research for Architecture and Building Construction: Biological Design and Integrative Structures, 169-193, (2016). DOI: https://doi.org/10.1007/978-3-319-46374-2_9 CR - [27] Born, L., Jonas, F. A., Bunk, K., Masselter, T., Speck, T., Knippers, J., and Gresser, G. T., Branched structures in plants and architecture. In Biomimetic Research for Architecture and Building Construction: Biological Design and Integrative Structures, 195-215, (2016). DOI: https://doi.org/10.1007/978-3-319-46374-2_10 CR - [28] Westermeier, A. S., Poppinga, S., Körner, A., Born, L., Sachse, R., Saffarian, S., Knippers, J., Bischoff, M., Gresser, GT., and Speck, T., No joint ailments: How plants move and inspire technology. In Biomimetics for Architecture: Learning from Nature, Birkhäuser, Basel, 32-41, (2019). DOI: https://doi.org/10.1515/9783035617917-006 CR - [29] Bunk, K., Jonas, F. A., Born, L., Hesse, L., Möhl, C., Gresser, GT., Knippers, J., Speck, T., and Masselter, T., From plant branchings to technical support structures. In Biomimetics for Architecture: Learning from Nature, Birkhäuser, Basel, 144-152, (2019). CR - [30] Waimer, F., La Magna, R., and Knippers, J., “Nature-inspired structural optimization of freeform shells”, International Conference Structures and Architecture (ICSA), (2013). CR - [31] Dahy, H., and Knippers, J., “Agricultural residues applications in contemporary building industry”, International Conference on Structures and Architecture (ICSA), Portogallo, (2013). CR - [32] Betz, O., Birkhold, A., Caliaro, M., Eggs, B., Mader, A., Knippers, J., and Speck, O., Adaptive stiffness and joint-free kinematics: actively actuated rod-shaped structures in plants and animals and their biomimetic potential in architecture and engineering. In Biomimetic Research for Architecture and Building Construction: Biological Design and Integrative Structures, 135-167, (2016). CR - [33] Speck, O., Caliaro, M., Mader A., and Knippers, J., Plants In Action. In Biomimetics for Architecture, 14–21, (2019). CR - [34] Violano, A., and Melchiorre, L., Eco-friendly materials and technologies: the added value of urban transformation. In Best Practices in Heritage, Conservation and Management From the World to Pompeii, La Scuola di Pitagora, (2014). CR - [35] Violano, A., “Beyond Materials: the experimentation of bio-based grown materials from mycelia”, TECHNE-Journal of Technology for Architecture and Environment, 299-307, (2018). CR - [36] Violano, A., Cannaviello, M., and Della Cioppa, A., Building With Wood: the summer energy performance according the UNITS 11300: 2014-I. In Heritage and Technology, Mind Knowledge Experience, 1940-1947, (2015). CR - [37] Albrizio, S., Capobianco, L., Di Domenico, C., Fiore, A., Fiore, W., Franchino, R, and Violano, A., “The SEEM project: a Solar Eco-Efficient Envelope Model”, Heritage Architecture Landesign focus on Conservation Regeneration Innovation Le vie dei Mercanti XI Forum Internazionale di Studi 1364-1371, (2013). CR - [38] Abdallah, Y. K., and Estevez, A. T., “Bioactive devices as self-sufficient systems for energy production in architecture”, Journal of Green Building, 16(2): 3-22, (2021). DOI: 10.3992/jgb.16.2.3 CR - [39] Giannopoulou, E., Baquero, P., Warang, A., Orciuoli, A., Estevez, A. T., and Brun-Usan, M. A., “Biological pattern based on reaction-diffusion mechanism employed as fabrication strategy for a shell structure”, IOP Conference Series: Materials Science and Engineering, 471(10), 102053, (2019). DOI: 10.1088/1757-899X/471/10/102053 CR - [40] Almusaed, A., Green Areas in Biophilic Architecture. In Biophilic and Bioclimatic Architecture: Analytical Therapy for the Next Generation of Passive Sustainable Architecture, 113-122, (2011). DOI: https://doi.org/10.1007/978-1-84996-534-7_8 CR - [41] Almusaed, A., Biophilic and bioclimatic architecture: Analytical therapy for the next generation of passive sustainable architecture, Springer Science & Business Media, New York, (2011). DOI: https://doi.org/10.1007/978-1-84996-534-7 CR - [42] Almusaed, A., Biophilic Architecture Hypothesis. In Biophilic and Bioclimatic Architecture: Analytical Therapy for the Next Generation of Passive Sustainable Architecture, 39-46, (2011). DOI: https://doi.org/10.1007/978-1-84996-534-7_4 CR - [43] Almusaed, A., Socio and Healthy Human Psychology upon Biophilic Architecture. In Biophilic and Bioclimatic Architecture: Analytical Therapy for the Next Generation of Passive Sustainable Architecture, 173-186, (2011). DOI: https://doi.org/10.1007/978-1-84996-534-7_14 CR - [44] Malaktou, E., and Philokyprou, M., “Summer thermal comfort conditions in shopping arcades and their adjoining streets in hot and dry climates. The case of the Nicosia’s historic centre”, IOP Conference Series: Earth and Environmental Science, 410(1), 012093, (2020). DOI: https://doi.org/10.1088/1755-1315/410/1/012093 CR - [45] Philokyprou, M., Savvides, A., Michael, A., and Malaktou, E., “Examination and assessment of the environmental characteristics of vernacular rural settlements. Three case studies in Cyprus”, World Sustainable Building Conference SB14, Barcelona, 1-8 (2014). CR - [46] Philokyprou, M., Michael, A., Thravalou, S., and Ioannou, I., “Evaluation of sustainable design elements in the historic centre of Nicosia, Cyprus”, Vernacular Heritage and Earthen Architecture, 631-637, (2013). CR - [47] Philokyprou, M., Michael, A., and Thravalou, S., “Assessment of the bioclimatic elements of vernacular architecture. The historic centre of Nicosia, Cyprus”, Le Vie dei Mercanti XI Forum Internazionale di Studi, Aversa, Capri, 13-15, (2013). CR - [48] Philokyprou, M., “Teaching conservation and vernacular architecture”, Journal of Architectural Conservation, 17(2): 7-24, (2011). DOI: https://doi.org/10.1080/13556207.2011.10785086 CR - [49] Favoino, F., Jin, Q., and Overend, M., “Towards an ideal adaptive glazed façade for office buildings”, Energy Procedia, 62: 289-298, (2014). DOI: https://doi.org/10.1016/j.egypro.2014.12.390 CR - [50] Favoino, F., and Overend, M., “A simulation framework for the evaluation of next generation Responsive Building Envelope Technologies”, Energy Procedia, 78: 2602-2607 (2015). DOI: https://doi.org/10.1016/j.egypro.2015.11.302 CR - [51] Favoino, F., Fiorito, F., Cannavale, A., Ranzi, G., and Overend, M., “Optimal control and performance of photovoltachromic switchable glazing for building integration in temperate climates”, Applied Energy, 178: 943-961, (2016). DOI: https://doi.org/10.1016/j.apenergy.2016.06.107 CR - [52] Favoino, F., Jin, Q., and Overend, M., “Design and control optimisation of adaptive insulation systems for office buildings. Part 1: Adaptive technologies and simulation framework”, Energy, 127: 301-309, (2017). DOI: https://doi.org/10.1016/j.energy.2017.03.083 CR - [53] Loonen, R. C., Favoino, F., Hensen, J. L., and Overend, M., “Review of current status, requirements and opportunities for building performance simulation of adaptive facades”, Journal of Building Performance Simulation, 10(2): 205-223, (2017). DOI: https://doi.org/10.1080/19401493.2016.1152303 CR - [54] Giovannini, L., Serra, V., Verso, V. R. L., Pellegrino, A., Zinzi, M., and Favoino, F., “A novel methodology to optimize visual comfort and energy performance for transparent adaptive façades”, International Conference on Environment and Electrical Engineering (IEEE) and Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Palermo, 1-6, (2018). DOI: https://doi.org/10.1109/EEEIC.2018.8494565 CR - [55] Giovannini, L., Favoino, F., Pellegrino, A., Verso, V. R. M. L., Serra, V., and Zinzi, M., “Thermochromic glazing performance: From component experimental characterisation to whole building performance evaluation”, Applied Energy, 251, (2019). DOI: https://doi.org/10.1016/j.apenergy.2019.113335 CR - [56] Giovannini, L., Favoino, F., Serra, V., and Zinzi, M., “Thermo-chromic glazing in buildings: A novel methodological framework for a multi-objective performance evaluation”, Energy Procedia, 158: 4115-4122, (2019). DOI: https://doi.org/10.1016/j.egypro.2019.01.822 CR - [57] Favoino, F., Goia, F., Perino, M., and Serra, V., “Experimental analysis of the energy performance of an ACTive, RESponsive and Solar (ACTRESS) façade module", Solar Energy, 133: 226-248, (2016). DOI: https://doi.org/10.1016/j.solener.2016.03.044 CR - [58] Tabadkani, A., Roetzel, A., Li, H. X., Tsangrassoulis, A., “A review of automatic control strategies based on simulations for adaptive facades”, Building and Environment, 175, 106801, (2020). DOI: https://doi.org/10.1016/j.buildenv.2020.106801 CR - [59] Tabadkani, A., Tsangrassoulis, A., Roetzel, A., and Li, H. X., “Innovative control approaches to assess energy implications of adaptive facades based on simulation using EnergyPlus”, Solar Energy, 206: 256-268, (2020). DOI: https://doi.org/10.1016/j.solener.2020.05.087 CR - [60] Tabadkani, A., Roetzel, A., Li, H. X., and Tsangrassoulis, A., “Design approaches and typologies of adaptive facades: A review”, Automation in Construction, 121, 103450, (2021). DOI: https://doi.org/10.1016/j.autcon.2020.103450 CR - [61] Tabadkani, A., Roetzel, A., Li, H. X., and Tsangrassoulis, A., “A review of occupant-centric control strategies for adaptive facades”, Automation in Construction, 122, 103464, (2021). DOI: https://doi.org/10.1016/j.autcon.2020.103464 CR - [62] Tabadkani, A., Roetzel, A., Li, H. X., and Tsangrassoulis, A., “Simulation-based personalized real-time control of adaptive facades in shared office spaces”, Automation in Construction, 138, 104246, (2022). DOI: https://doi.org/10.1016/j.autcon.2022.104246 CR - [63] Tabadkani, A., Haddadi, M., Rizi, R. A., and Tabadkani, E., “A hierarchical multi-purpose roller shade controller to enhance indoor comfort and energy efficiency”, Building Simulation, 16(7): 1239-1256, (2023). DOI: https://doi.org/10.1007/s12273-023-1003-7 CR - [64] Tabadkani, A., Dehnavi, A. N., Mostafavi, F., and Naeini, H. G., “Targeting modular adaptive façade personalization in a shared office space using fuzzy logic and genetic optimization”, Journal of Building Engineering, 69: 106118, (2023). DOI: https://doi.org/10.1016/j.jobe.2023.106118 CR - [65] Tabadkani, A., Roetzel, A., Li, H. X., Tsangrassoulis, A., and Attia, S., “Analysis of the impact of automatic shading control scenarios on occupant’s comfort and energy load”, Applied Energy, 294, 116904, (2021). DOI: https://doi.org/10.1016/j.apenergy.2021.116904 CR - [66] Attia, S., Bertrand, S., Cuchet, M., Yang, S., and Tabadkani, A., “Comparison of thermal energy saving potential and overheating risk of four adaptive façade technologies in office buildings”, Sustainability, 14(10), 6106, (2022). DOI: https://doi.org/10.3390/su14106106 CR - [67] Norouziasas, A., Tabadkani, A., Rahif, R., Amer, M., van Dijk, D., Lamy, H., and Attia, S., “Implementation of ISO/DIS 52016-3 for adaptive façades: A case study of an office building”, Building and Environment, 235, 110195, (2023). DOI: https://doi.org/10.1016/j.buildenv.2023.110195 CR - [68] Cui, H., and Overend, M., “A review of heat transfer characteristics of switchable insulation technologies for thermally adaptive building envelopes”, Energy and Buildings, 199: 427-444, (2019). DOI: https://doi.org/10.1016/j.enbuild.2019.07.004 CR - [69] Magri, E., Buhagiar, V., and Overend, M., “The Potential of Smart Glazing for Occupant Well-Being and Reduced Energy Load in a Central-Mediterranean Climate”, KnE Social Sciences, 534-545, (2019). DOI: https://doi.org/10.18502/kss.v3i27.5555 CR - [70] Serra, V., Zanghirella, F., and Perino, M., “Experimental evaluation of a climate facade: energy efficiency and thermal comfort performance”, Energy and Buildings, 42(1): 50-62, (2010). DOI: https://doi.org/10.1016/j.enbuild.2009.07.010 CR - [71] Goia, F., Perino, M., Serra, V., and Zanghirella, F., “Towards an active, responsive, and solar building envelope”, Journal of Green Building, 5(4): 121-136, (2010). DOI: https://doi.org/10.3992/jgb.5.4.121 CR - [72] Callegari, G., Spinelli, A., Bianco, L., Serra, V., and Fantucci, S., “NATURWALL©-A solar timber façade system for building refurbishment: optimization process through in field measurements”, Energy Procedia, 78: 291-296, (2015). DOI: https://doi.org/10.1016/j.egypro.2015.11.641 CR - [73] Attia, S., Lioure, R., and Declaude, Q., “Future trends and main concepts of adaptive facade systems”, Energy Science & Engineering, 8(9): 3255-3272, (2020). DOI: https://doi.org/10.1002/ese3.725 CR - [74] Valitabar, M., Ghaffarian Hoseini, A., and Attia, S., “Advanced control strategy to maximize view and control discomforting glare: a complex adaptive façade”, Architectural Engineering and Design Management, 18(6): 829-849, (2022). DOI: https://doi.org/10.1080/17452007.2022.2032576 CR - [75] Hosseini, S. M., Heidari, S., Attia, S., Wang, J., and Triantafyllidis, G., “Biomimetic kinetic façade as a real-time daylight control: complex form versus simple form with proper kinetic behavior”, International Conference on Smart and Sustainable Built Environment (SASBE), Auckland, (2024). DOI: https://doi.org/10.1108/SASBE-03-2024-0090 CR - [76] Hosseini, S. M., Mohammadi, M., Schröder, T., and Guerra-Santin, O., “Integrating interactive kinetic façade design with colored glass to improve daylight performance based on occupants’ position”, Journal of Building Engineering, 31, 101404, (2020). DOI: https://doi.org/10.1016/j.jobe.2020.101404 CR - [77] Hosseini, S. M., Mohammadi, M., Schröder, T., and Guerra-Santin, O., “Bio-inspired interactive kinetic façade: Using dynamic transitory-sensitive area to improve multiple occupants’ visual comfort”, Frontiers of Architectural Research, 10(4): 821-837, (2021). DOI: https://doi.org/10.1016/j.foar.2021.07.004 CR - [78] Hosseini, S. M., and Heidari, S., “General morphological analysis of Orosi windows and morpho butterfly wing's principles for improving occupant's daylight performance through interactive kinetic façade”, Journal of Building Engineering, 59, 105027, (2022). DOI: https://doi.org/10.1016/j.jobe.2022.105027 CR - [79] Sommese, F., Hosseini, S. M., Badarnah, L., Capozzi, F., Giordano, S., Ambrogi, V., and Ausiello, G., “Light-responsive kinetic façade system inspired by the Gazania flower: A biomimetic approach in parametric design for daylighting”, Building and Environment, 247, 111052, (2024). CR - [80] Heidari Matin, N., and Eydgahi, A., “Factors affecting the design and development of responsive facades: a historical evolution”, Intelligent Buildings International, 12(4): 257-270, (2020). CR - [81] Heidari Matin, N., and Eydgahi, A., “Using Smart Colored Windows for Improving Users’ Comfort in Buildings”, 3rd International Conference on Architecture, Construction, Environment and Hydraulics (ICACEH), 29-33, (2021). DOI: https://doi.org/10.1109/icaceh54312.2021.9768848 CR - [82] Heidari Matin, N., and Eydgahi, A., “Technologies used in responsive facade systems: a comparative study”, Intelligent Buildings International, 14(1): 54-73, (2022). DOI: https://doi.org/10.1080/17508975.2019.1577213 CR - [83] Heidari Matin, N., and Eydgahi, A., “A data-driven optimized daylight pattern for responsive facades design”, Intelligent Buildings International, 14(3): 363-374, (2022). DOI: https://doi.org/10.1080/17508975.2021.1872478 CR - [84] Heidari Matin, N., Eydgahi, A., and Matin, P., “The effect of smart colored windows on visual performance of buildings”, Buildings, 12(6): 861, (2022). DOI: https://doi.org/10.3390/buildings12060861 CR - [85] Heidari Matin, N., Eydgahi, A., Gharipour, A., and Matin, P., “A Novel Framework for Optimizing Indoor Illuminance and Discovering Association of Involved Variables”, Buildings, 12(7): 878, (2022). DOI: https://doi.org/10.3390/buildings12070878 CR - [86] Rashidzadeh, Z., and Heidari Matin, N., “A comparative study on smart windows focusing on climate-based energy performance and users’ comfort attributes”, Sustainability, 15(3): 2294, (2023). DOI: https://doi.org/10.3390/su15032294 CR - [87] Badarnah, L., “A biophysical framework of heat regulation strategies for the design of biomimetic building envelopes”, Procedia Engineering, 118: 1225-1235, (2015). DOI: https://doi.org/10.1016/j.proeng.2015.08.474 CR - [88] Badarnah, L., and Kadri, U., “A methodology for the generation of biomimetic design concepts”, Architectural Science Review, 58(2): 120-133, (2015). DOI: https://doi.org/10.1080/00038628.2014.922458 CR - [89] Cruz, E., Hubert, T., Chancoco, G., Naim, O., Chayaamor-Heil, N., Cornette, R., and Aujard, F., “Design processes and multi-regulation of biomimetic building skins: A comparative analysis”, Energy and Buildings, 246, 111034, (2021). DOI: https://doi.org/10.1016/j.enbuild.2021.111034 CR - [90] Badarnah, L., “Form follows environment: Biomimetic approaches to building envelope design for environmental adaptation”, Buildings, 7(2): 40, (2017). DOI: https://doi.org/10.3390/buildings7020040 CR - [91] Peeks, M., and Badarnah, L., “Textured building façades: utilizing morphological adaptations found in nature for evaporative cooling”, Biomimetics, 6(2): 24, (2021). CR - [92] Sommese, F., Badarnah, L., and Ausiello, G., “A critical review of biomimetic building envelopes: towards a bio-adaptive model from nature to architecture”, Renewable and Sustainable Energy Reviews, 169, 112850, (2022). DOI: https://doi.org/10.1016/j.rser.2022.112850 CR - [93] Sommese, F., Badarnah, L., and Ausiello, G., “Smart materials for biomimetic building envelopes: current trends and potential applications”, Renewable and Sustainable Energy Reviews, 188, 113847, (2023). DOI: https://doi.org/10.1016/j.rser.2023.113847 CR - [94] Jalali, S., Nicoletti, E., and Badarnah, L., “From Flora to Solar Adaptive Facades: Integrating Plant-Inspired Design with Photovoltaic Technologies”, Sustainability, 16(3): 1145, (2024). CR - [95] Hays, N., Badarnah, L., and Jain, A., “Biomimetic design of building facades: an evolutionary-based computational approach inspired by elephant skin for cooling in hot and humid climates”, Frontiers in Built Environment, 10, 1309621, (2024). DOI: https://doi.org/10.3389/fbuil.2024.1309621 CR - [96] Ameh, H., Badarnah, L., and Lamond, J., “Amphibious Architecture: A Biomimetic Design Approach to Flood Resilience”, Sustainability, 16(3): 1069, (2024). DOI: https://doi.org/10.3390/su16031069 CR - [97] Schleicher, S., Lienhard, J., Poppinga, S., Speck, T., and Knippers, J., Abstraction of bio-inspired curved-line folding patterns for elastic foils and membranes in architecture. In Design and Nature V, WIT Press, 479-90, (2010). DOI: https://doi.org/10.2495/DN100431 CR - [98] Schleicher, S., Lienhard, J., Poppinga, S., Speck, T., and Knippers, J., “A methodology for transferring principles of plant movements to elastic systems in architecture”, Computer-Aided Design, 60: 105-117, (2015). DOI: https://doi.org/10.1016/j.cad.2014.01.005 CR - [99] Antony, F., Grießhammer, R., Speck, T., and Speck, O., “The cleaner, the greener? Product sustainability assessment of the biomimetic façade paint Lotusan® in comparison to the conventional façade paint Jumbosil®”, Beilstein Journal of Nanotechnology, 7(1): 2100-2115, (2016). DOI: https://doi.org/10.3762/bjnano.7.200 CR - [100] Poppinga, S., Zollfrank, C., Prucker, O., Rühe, J., Menges, A., Cheng, T., and Speck, T., “Toward a new generation of smart biomimetic actuators for architecture”, Advanced Materials, 30(19), 1703653, (2018). DOI: https://doi.org/10.1002/adma.201703653 CR - [101] Körner, A., Born, L., Mader, A., Sachse, R., Saffarian, S., Westermeier, A. S., and Knippers, J., “ for—a biomimetic compliant shading device for complex free form facades”, Smart Materials and Structures, 27(1), 017001, (2017). DOI: https://doi.org/10.1088/1361-665X/aa9c2f CR - [102] Speck, T., Poppinga, S., Speck, O., and Tauber, F., “Bio-inspired life-like motile materials systems: Changing the boundaries between living and technical systems in the Anthropocene”, The Anthropocene Review, 9(2): 237-256, (2022). DOI: https://doi.org/10.1177/20530196211039275 CR - [103] Speck, O., and Speck, T., “Biomimetics in botanical gardens—Educational trails and guided tours”, Biomimetics, 8(3): 303, (2023). DOI: https://doi.org/10.3390/biomimetics8030303 CR - [104] Cheng, T., Tahouni, Y., Sahin, E. S., Ulrich, K., Lajewski, S., Bonten, C., and Menges, A., “Weather-responsive adaptive shading through biobased and bioinspired hygromorphic 4D-printing”, Nature Communications, 15(1), 10366, (2024). DOI: https://doi.org/10.1038/s41467-024-54808-8 CR - [105] Schieber, G., Born, L., Bergmann, P., Körner, A., Mader, A., Saffarian, S., and Knippers, J., “Hindwings of insects as concept generator for hingeless foldable shading systems”, Bioinspiration & Biomimetics, 13(1), 016012, (2017). DOI: https://doi.org/10.1088/1748-3190/aa979c CR - [106] Mader, A., Langer, M., Knippers, J., and Speck, O., “Learning from plant movements triggered by bulliform cells: the biomimetic cellular actuator”, Journal of the Royal Society Interface, 17(169), 20200358, (2020). DOI: https://doi.org/10.1098/rsif.2020.0358 CR - [107] Vazquez, E., Correa, D., and Poppinga, S., “A review of and taxonomy for elastic kinetic building envelopes”, Journal of Building Engineering, 82, 108227, (2024). DOI: https://doi.org/10.1016/j.jobe.2023.108227 CR - [108] Hosseini, S. M., Mohammadi, M., Rosemann, A., Schröder, T., and Lichtenberg, J., “A morphological approach for kinetic façade design process to improve visual and thermal comfort”, Building and Environment, 153: 186-204, (2019). DOI: https://doi.org/10.1016/j.buildenv.2019.02.040 CR - [109] Menges, A., and Reichert, S., “Material capacity: embedded responsiveness”, Architectural Design, 82(2): 52-59, (2012). DOI: https://doi.org/10.1002/ad.1379 CR - [110] Reichert, S., Menges, A., and Correa, D., “Meteorosensitive architecture: Biomimetic building skins based on materially embedded and hygroscopically enabled responsiveness”, Computer-Aided Design, 60: 50-69, (2015). DOI: https://doi.org/10.1016/j.cad.2014.02.010 CR - [111] Tahouni, Y., Cheng, T., Lajewski, S., Benz, J., Bonten, C., Wood, D., and Menges, A., “Codesign of biobased cellulose-filled filaments and mesostructures for 4D printing humidity responsive smart structures”, 3D Printing and Additive Manufacturing, 10(1): 1-14, (2023). DOI: https://doi.org/10.1089/3dp.2022.0061 CR - [112] Webb, M., Aye, L., and Green, R., “Investigating potential comfort benefits of biologically inspired building skins”, 13th Conference of International Building Performance Simulation Association, Chambéry, 2634-2641, (2013). CR - [113] Webb, M., Aye, L. and Green, R., “TRNSYS simulation and thermal performance of biomimetic façade designs”, Crawford, RH (Ed.) Stephan, A. (Ed.) Living And Learning: Research For A Better Built Environment, 434-443, (2015). DOI: https://doi.org/10.1016/j.apenergy.2017.08.115 CR - [114] Webb, M., Aye, L., and Green, R., “Simulation of a biomimetic façade using TRNSYS”. Applied Energy, 213, 670-694, (2018). DOI: https://doi.org/10.1016/j.apenergy.2017.08.115 CR - [115] Webb, M., “Biomimetic building facades demonstrate potential to reduce energy consumption for different building typologies in different climate zones”, Clean Technologies and Environmental Policy, 24(2): 493-518, (2022). DOI: https://doi.org/10.1007/s10098-021-02183-z CR - [116] Wang, J., and Li, J., “Bio-inspired kinetic envelopes for building energy efficiency based on parametric design of building information modeling”, Asia-Pacific Power and Energy Engineering Conference, Chengdu, pp. 1-4, (2010). DOI: https://doi.org/10.1109/APPEEC.2010.5449511 CR - [117] El Ahmar, S., and Fioravanti, A., “Botanics and Parametric Design Fusions for Performative Building Skins”, Smart and Responsive Design, 2: 595-604, (2014). CR - [118] Han, Y., Taylor, J. E., and Pisello, A. L., “Toward mitigating urban heat island effects: Investigating the thermal-energy impact of bio-inspired retro-reflective building envelopes in dense urban settings”, Energy and Buildings, 102: 380-389, (2015). CR - [119] El Ahmar, S., and Fioravanti, A., “Biomimetic-computational design for double facades in hot climates”, Smart and Responsive Design, 2: 687-696, (2015). DOI: https://doi.org/10.52842/conf.ecaade.2015.2.687 CR - [120] Bouabdallah, N., M’sellem, H., and Alkama, D., “Biomimicry as an approach for sustainable architecture case of arid regions with hot and dry climate”, Technologies and Materials for Renewable Energy, Environment and Sustainability (TMREES), Beirut, 1758(1), (2016). CR - [121] Fecheyr-Lippens, D., and Bhiwapurkar, P., “Applying biomimicry to design building envelopes that lower energy consumption in a hot-humid climate”, Architectural Science Review, 60(5): 360-370, (2017). DOI: https://doi.org/10.1080/00038628.2017.1359145 CR - [122] Holstov, A., Farmer, G., and Bridgens, B., “Sustainable materialisation of responsive architecture”, Sustainability, 9(3): 435, (2017). DOI: https://doi.org/10.3390/su9030435 CR - [123] Jahanara, A., and Fioravanti, A., “Kinetic Shading System as a means for Optimizing Energy Load. A Parametric Approach to Optimize Daylight Performance for an Office Building in Rome”, 35th International Conference on Education and Research in Computer Aided Architectural Design in Europe, Rome, 2: 231-240, (2017). DOI: https://doi.org/10.52842/conf.ecaade.2017.2.231 CR - [124] Sheikh, W. T., and Asghar, Q., “Adaptive biomimetic facades: Enhancing energy efficiency of highly glazed buildings”, Frontiers of Architectural Research, 8(3): 319-331, (2019). DOI: https://doi.org/10.1016/j.foar.2019.06.001 CR - [125] Kuru, A., Oldfield, P., Bonser, S., and Fiorito, F., “A framework to achieve multifunctionality in biomimetic adaptive building skins”, Buildings, 10(7): 114, (2020). CR - [126] Yoon, J., and Bae, S., “Performance evaluation and design of thermo-responsive SMP shading prototypes”, Sustainability, 12(11): 4391, (2020). DOI: https://doi.org/10.3390/su12114391 CR - [127] Nalcaci, G., “Modeling and Implementation of an Adaptive Facade Design for Energy Efficiently Buildings Based Biomimicry”, 8th International Conference on Smart Grid (icSmartGrid), Paris, 140-145, (2020). DOI: https://doi.org/10.1109/icSmartGrid49881.2020.9144954 CR - [128] Abdel-Rahman, W. S. M., “Thermal performance optimization of parametric building envelope based on bio-mimetic inspiration”, Ain Shams Engineering Journal, 12(1): 1133-1142, (2021). CR - [129] Petriccione, L., Fulchir, F., and Chinellato, F., “Applied innovation: Technological experiments on biomimetic facade systems and solar panels”, Techne, 2: 82-86, (2021). DOI: https://doi.org/10.13128/techne-10687 CR - [130] Bui, D. K., Nguyen, T. N., Ghazlan, A., and Ngo, T. D., “Biomimetic adaptive electrochromic windows for enhancing building energy efficiency”, Applied Energy, 300, 117341, (2021). CR - [131] Andrade, T. A. B. D., Beirão, J. N. D. C., Arruda, A. J. V. D., and Cruz, C., “The adaptive power of ammophila arenaria: biomimetic study, systematic observation, parametric design, and experimental tests with bimetal”, Polymers, 13(15), 2554, (2021). DOI: https://doi.org/10.3390/polym13152554 CR - [132] Sankaewthong, S., Horanont, T., Miyata, K., Karnjana, J., Busayarat, C., and Xie, H., “Using a biomimicry approach in the design of a kinetic façade to regulate the amount of daylight entering a working space”, Buildings, 12(12), 2089, (2022). DOI: https://doi.org/10.3390/buildings12122089 CR - [133] Hafizi, N., and Karimnezhad, M., “Biomimetic architecture towards bio inspired adaptive envelopes: in case of plant inspired concept generation”, International Journal of Built Environment and Sustainability, 9(1): 1-10, (2022). DOI: https://doi.org/10.11113/ijbes.v9.n1.820 CR - [134] Teraa, S., and Bencherif, M., “From hygrothermal adaptation of endemic plants to meteorosensitive biomimetic architecture: case of Mediterranean biodiversity hotspot in Northeastern Algeria”, Environment, Development and Sustainability, 24(9), 10876-10901, (2022). DOI: https://doi.org/10.1007/s10668-021-01887-y CR - [135] Anzaniyan, E., Alaghmandan, M., and Montaser Koohsari, A., “Design, fabrication and computational simulation of a bio-kinetic façade inspired by the mechanism of the Lupinus Succulentus plant for daylight and energy efficiency”, Science and Technology for the Built Environment, 28(10): 1456-1471, (2022). DOI: https://doi.org/10.1080/23744731.2022.2122675 CR - [136] Sankaewthong, S., Miyata, K., Horanont, T., Xie, H., and Karnjana, J., “Mimosa Kinetic Façade: Bio-Inspired Ventilation Leveraging the Mimosa Pudica Mechanism for Enhanced Indoor Air Quality”, Biomimetics, 8(8), 603, (2023). DOI: https://doi.org/10.3390/biomimetics8080603 CR - [137] Kim, M. J., Kim, B. G., Koh, J. S., and Yi, H., “Flexural biomimetic responsive building façade using a hybrid soft robot actuator and fabric membrane”, Automation in Construction, 145, 104660, (2023). DOI: https://doi.org/10.1016/j.autcon.2022.104660 CR - [138] Öztürk, B., Mutlu-Avinç, G., and Arslan-Selçuk, S., “Enhancing energy efficiency in glass facades through biomimetic design strategies”, Hábitat Sustentable, 34-43, (2024). CR - [139] Avinç, G. M., Koç, S. N., and Selçuk, S. A., “Biomimetic Facade Design Proposal to Improving Thermal Comfort in Hot Climate Region”, International Journal of Built Environment and Sustainability, 11(2): 27-39, (2024). DOI: https://doi.org/10.11113/ijbes.v11.n2.1226 CR - [140] Andrade, T., Beirão, J., Arruda, A., and Vinagre, N., “Kinetic module in bimetal: A biomimetic approach adapting the kinetic behavior of bimetal for adaptive Façades”, Materials & Design, 239, 112807, (2024). DOI: https://doi.org/10.1016/j.matdes.2024.112807 CR - [141] Kahvecioğlu, B., Mutlu Avinç, G., and Arslan Selçuk, S., “Biomimetic Adaptive Building Façade Modeling for Sustainable Urban Freshwater Ecosystems: Integration of Nature’s Water-Harvesting Strategy into Sun-Breakers”, Biomimetics, 9(9), 569, (2024). DOI: https://doi.org/10.3390/biomimetics9090569 UR - https://doi.org/10.35378/gujs.1629541 L1 - https://dergipark.org.tr/en/download/article-file/4563515 ER -