TY - JOUR T1 - Fuzzy Solutions of Fuzzy Fractional Parabolic Integro Differential Equations AU - Saeed, Nagwa AU - Pachpatte, Deepak PY - 2025 DA - June Y2 - 2025 DO - 10.32323/ujma.1631793 JF - Universal Journal of Mathematics and Applications JO - Univ. J. Math. Appl. PB - Emrah Evren KARA WT - DergiPark SN - 2619-9653 SP - 81 EP - 93 VL - 8 IS - 2 LA - en AB - This work primarily investigates the numerical solution of fuzzy fractional parabolic integro-differential equations of the Volterra type with the time derivative defined in the Caputo sense using the fuzzy Adomian decomposition method. Fuzzy fractional partial integro-differential equations pose significant mathematical challenges due to the interplay between fuzziness and fractional-order dynamics, while at the same time, there is a growing need for accurate and efficient methods to model real-world phenomena involving uncertainty in physics, biology, and engineering. The fuzzy Adomian decomposition method provides an alternative approach for obtaining approximate fuzzy solutions, and its applicability to such equations has not been studied in detail previously in the literature. Furthermore, existence and uniqueness theorems for the fuzzy fractional partial integro-differential equation are established by considering the differentiability type of the solution. The accuracy and efficiency of the proposed method are demonstrated through a series of numerical experiments. KW - Adomian decomposition method KW - Fixed point theorem KW - Fuzzy fractional derivative KW - Fuzzy fractional parabolic equation CR - [1] H. R. Marasi, H. Afshari, C. B. Zhai, Some existence and uniqueness results for nonlinear fractional partial differential equations, Rocky Mountain J. Math., 47(2) (2017), 571–585. https://doi.org/10.1216/RMJ-2017-47-2-571 CR - [2] D.B. Pachpatte, Existence and stability of some nonlinear ψ-Hilfer partial fractional differential equation, Partial Differential Equations in Applied Mathematics, 3 (2021), Article ID 100032. https://doi.org/10.1016/j.padiff.2021.100032 CR - [3] L. Deng, A. Ducrot, Existence of multi-dimensional pulsating fronts for KPP equations: a new formulation approach, Calc. Var. Partial Differential Equations, 62 (2023), Article ID 134. https://doi.org/10.1007/s00526-023-02473-y CR - [4] R. Shah, H. Khan, P. Kumam, M. Arif, An analytical technique to solve the system of nonlinear fractional partial differential equations, Mathematics, 7(6) (2019), Article ID 505. https://doi.org/10.3390/math7060505 CR - [5] P. Jena, S. M. S. Mishra, A. A. Al-Moneef, A. A. Hindi, K. S. Nisar, The solution of nonlinear time-fractional differential equations: an approximate analytical approach, Progress in Fractional Differentiation and Applications, 8(1) (2022), 191–204. http://dx.doi.org/10.18576/pfda/080112 CR - [6] M. N. Koleva, L. G. Vulkov, Numerical analysis of direct and inverse problems for a fractional parabolic integro-differential equation, Fractal Fract., 7(8) (2023), Article ID 601. https://doi.org/10.3390/fractalfract7080601 CR - [7] R. P. Agarwal, V. Lakshmikantham, J. J. Nieto, On the concept of solution for fractional differential equations with uncertainty, Nonlinear Anal., 72(6) (2010), 2859–2862. https://doi.org/10.1016/j.na.2009.11.029 CR - [8] S. Arshad, V. Lupulescu, On the fractional differential equations with uncertainty, Nonlinear Anal., 74(11) (2011), 3685–3693. https://doi.org/10.1016/j.na.2011.02.048 CR - [9] M. Hukuhara, Integration des applications measurables dont la valuer est un compact convexe, Funkcialaj Ekvacioj, 10(3) (1967), 205–223. CR - [10] B. Bede, L. Stefanini, Generalized differentiability of fuzzy-valued functions, Fuzzy Sets and systems, 230 (2013), 119-141. https://doi.org/10.1016/j.fss.2012.10.003 CR - [11] B. Shiri, A unified generalization for Hukuhara types differences and derivatives: Solid analysis and comparisons, AIMS Math., 8(1) (2023), 2168–2190.https://doi.org/10.3934/math.2023112 CR - [12] F. Longo, B. Laiate, M. C. Gadotti, J. F. da CA Meyer, Characterization results of generalized differentiabilities of fuzzy functions, Fuzzy Sets Syst., 490 (2024), Article ID 109038. https://doi.org/10.1016/j.fss.2024.109038 CR - [13] S. Salahshour, T. Allahviranloo, S. Abbasbandy, Solving fuzzy fractional differential equations by fuzzy Laplace transforms, Commun. Nonlinear Sci. Numer. Simul., 17(3) (2012), 1372–1381. https://doi.org/10.1016/j.cnsns.2011.07.005 CR - [14] H. V. Long, N. T. Son, H. T. Tam, The solvability of fuzzy fractional partial differential equations under Caputo gH-differentiability, Fuzzy Sets Syst., 309 (2017), 35–63. https://doi.org/10.1016/j.fss.2016.06.018 CR - [15] M. A. Alqudah, R. Ashraf, S. Rashid, J. Singh, Z. Hammouch, T. Abdeljawad, Novel numerical investigations of fuzzy Cauchy reaction–diffusion models via generalized fuzzy fractional derivative operators, Fractal Fract., 5(4) (2021), Article ID 151. https://doi.org/10.3390/fractalfract5040151 CR - [16] N. A. Saeed, D. B. Pachpatte, A modified fuzzy Adomian decomposition method for solving time-fuzzy fractional partial differential equations with initial and boundary conditions, Bound. Value Probl., 2024(1) (2024), Article ID 82. https://doi.org/10.1186/s13661-024-01885-9 CR - [17] R. Alikhani, F. Bahrami, Global solutions for nonlinear fuzzy fractional integral and integrodifferential equations, Commun. Nonlinear Sci., 18 (2013), 2007–2017. CR - [18] A. Armand, Z. Gouyandeh, Fuzzy fractional integro-differential equations under generalized Caputo differentiability, Ann. Fuzzy Math. Inform., 10 (2015), 789–798. CR - [19] O. H. Mohammed, O. I. Khaleel, Fractional differential transform method for solving fuzzy integro-differential equations of fractional order, Basrah J. Sci., 34 (2016), 31–40. CR - [20] V. Padmapriya, M. Kaliyappan, V. Parthiban, Solution of fuzzy fractional Integro-Differential equations using a domain decomposition method, J. Inform. Math. Sci., 9 (2017), 501-507. CR - [21] S. Rashid, M. K. Kaabar, A. Althobaiti, M. S. Alqurashi, Constructing analytical estimates of the fuzzy fractional-order Boussinesq model and their application in oceanography, J. Ocean Eng. Sci., 8(2) (2023), 196–215. https://doi.org/10.1016/j.joes.2022.01.003 CR - [22] M. R. Nourizadeh, T. Allahviranloo, N. Mikaeilvand, Positive solutions of fuzzy fractional Volterra integro-differential equations with the fuzzy Caputo fractional derivative using the Jacobi polynomials operational matrix, Int. J. Comput. Sci. Netw. Secur., 18 (2018), 241–252. CR - [23] M. R. M. Shabestari, R. Ezzati, T. Allahviranloo, Numerical solution of fuzzy fractional integro-differential equation via two-dimensional Legendre wavelet method, J. Intell. Fuzzy Syst., 34(4) (2018), 2453–2465. https://doi.org/10.3233/JIFS-171707 CR - [24] B. Shiri, Z. Alijani, Y. Karaca, A power series method for the fuzzy fractional logistic differential equation, Fractals, 31(10) (2023), Article ID 2340086. https://doi.org/10.1142/S0218348X23400868 CR - [25] M. Alaroud, M. Al-Smadi, R. Ahmad, U. K. Din, An analytical numerical method for solving fuzzy fractional Volterra integro-differential equations, Symmetry, 11(2) (2019), Article ID 205. https://doi.org/10.3390/sym11020205 CR - [26] H. Hashemi, R. Ezzati, N. Mikaeilvand, M. Nazari, Study on fuzzy fractional European option pricing model with Mittag-Leffler kernel, J. Intell. Fuzzy Syst., 45(5) (2023), 8567-8582. CR - [27] S. Ahsan, R. Nawaz, M. Akbar, S. Abdullah, K. S. Nisar, V. Vijayakumar, Numerical solution of system of fuzzy fractional order Volterra integrodifferential equation using optimal homotopy asymptotic method, AIMS Math., 7(7) (2022), 13169–13191. https://doi.org/10.3934/math.2022726 CR - [28] T. Allahviranloo, Fuzzy Fractional Differential Operators and Equations: Fuzzy Fractional Differential Equations, Springer Nature, 2020. https://doi.org/10.1007/978-3-030-51272-9 CR - [29] B. Shiri, D. Baleanu, C. Y. Ma, Pathological study on uncertain numbers and proposed solutions for discrete fuzzy fractional order calculus, Open Phys., 21(1) (2023), Article ID 20230135. http://dx.doi.org/10.1515/phys-2023-0135 CR - [30] B. Shiri, I. Perfieliva, Z. Alijani, Classical approximation for fuzzy Fredholm integral equation, Fuzzy Sets Syst., 404 (2021), 159–177. https://doi.org/10.1016/j.fss.2020.03.023 CR - [31] S. Hartman, J. Mikusinski, The Theory of Lebesgue Measure and Integration, Elsevier, 2014. CR - [32] G. Adomian, A review of the decomposition method in applied mathematics, J. Math. Anal. Appl., 135(2) (1988), 501–544. https://doi.org/10.1016/0022-247X(88)90170-9 CR - [33] P. Pandit, P. Mistry, P. Singh, Population dynamic model of two species solved by fuzzy Adomian decomposition method, Math. Model., Comput. Intell. Tech. Renew. Energy, Proceedings of the First International Conference (MMCITRE 2020), (2021), 493–507. https://doi.org/10.1007/978-981-15-9953-8 42 CR - [34] N. A. Saeed, D. B. Pachpatte, Usage of the fuzzy Adomian decomposition method for solving some fuzzy fractional partial differential equations, Adv. Fuzzy Syst., 2024(1) (2024), Article ID 8794634. https://doi.org/10.1155/2024/8794634 CR - [35] A. Ullah, A. Ullah, S. Ahmad, I. Ahmad, A. Akgül, On solutions of fuzzy fractional order complex population dynamical model, Numer. Methods Partial Differential Equations, 39(6) (2020), 4595–4615. https://doi.org/10.1002/num.22654 CR - [36] A. Georgieva, A. Pavlova, Fuzzy Sawi decomposition method for solving nonlinear partial fuzzy differential equations, Symmetry, 13(9) (2021), Article ID 1580. https://doi.org/10.3390/sym13091580 CR - [37] K. Shah, A. R. Seadawy, M. Arfan, Evaluation of one dimensional fuzzy fractional partial differential equations, Alex. Eng. J., 59(5) (2020), 3347–3353. https://doi.org/10.1016/j.aej.2020.05.003 CR - [38] S. Askari, T. Allahviranloo, S. Abbasbandy, Solving fuzzy fractional differential equations by Adomian decomposition method used in optimal control theory, Int. Transact. J. Eng. Manage. Appl. Sci. Technol., 10(12) (2019), 1–10. CR - [39] M. Osman, Y. Xia, M. Marwan, O. A. Omer, Novel approaches for solving fuzzy fractional partial differential equations, Fractal Fract., 6(11) (2022), Article ID 656. https://doi.org/10.3390/fractalfract6110656 CR - [40] Z. Alijani, B. Shiri, I. Perfilieva, D. Baleanu, Numerical solution of a new mathematical model for intravenous drug administration, Evol. Intell., 17 (2024), 559–575. https://doi.org/10.1007/s12065-023-00840-4 UR - https://doi.org/10.32323/ujma.1631793 L1 - https://dergipark.org.tr/en/download/article-file/4573350 ER -