TY - JOUR T1 - Bioremediation Techniques for Water and Soil Pollution: Review AU - Ali, Hala Arshad AU - Farhan, Muthana Badeea PY - 2025 DA - April Y2 - 2025 DO - 10.28978/nesciences.1633049 JF - Natural and Engineering Sciences JO - NESciences PB - Cemal TURAN WT - DergiPark SN - 2458-8989 SP - 89 EP - 109 VL - 10 IS - 1 LA - en AB - Bioremediation is a novel and, environmentally benign technology that employs biological microbes to reduce pollution. Waterborne contaminants are a group of common materials that can enter rivers through a variety of entrance points, such as wastewater, the surrounding environment, ship emissions, and other sources. The majority of these dangerous compounds are consumed by marine life, whereupon they bioaccumulate in their body tissues and spread along the food chain through a process known as biomagnification. These practices may adversely affect the physiological processes of organisms, and the biochemical systems present in organic environments, which may have unintended negative effects concerning the overall wellness of humans, and animals, alongside the natural world. This review delves into various hazardous materials including a broad variety of chemical pollutants: including heavy metals, pesticides, and microplastics. Given the harmful consequences these toxins exert on environmental integrity, human health, and financial stability, immediate remediation is necessary. This review article provides a comprehensive analysis of bioremediation techniques used to address contamination of both soil and, water, emphasizing the intricate relationships between populations of microbes, environmental variables, and remediation efficacy. Therefore, various bioremediation methodologies are illustrated focusing on employing microbes in the procedure and investigating various technologies implemented. Furthermore, the metagenomic approach's potential to improve the effectiveness of bioremediation was highlighted. Ultimately, it highlights the necessity of bioremediation as an answer to organic contamination of soil and presents an overview of the various strategies and technologies accessible. The importance of this review is to deal with the cause of pollution (hazardous materials) and the solution (bioremediation). The goal and originality of this review are to provide the scientific community with an understanding and resolution to this global concern. Bioremediation will become increasingly important in the coming century due to global warming, increased mass production, and population growth. KW - Bioremediation KW - bioaugmentation KW - heavy metals KW - biostimulation KW - microplastics KW - soil pollution CR - AbuQamar, S. F., El-Saadony, M. T., Alkafaas, S. S., Elsalahaty, M. I., Elkafas, S. S., Mathew, B. T., ... & El-Tarabily, K. A. (2024). Ecological impacts and management strategies of pesticide pollution on aquatic life and human beings. Marine Pollution Bulletin, 206, 116613. https://doi.org/10.1016/j.marpolbul.2024.116613 CR - Agarwal, A., & Yadhav, S. (2023). Structure and Functional Guild Composition of Fish Assemblages in the Matla Estuary, Indian Sundarbans. Aquatic Ecosystems and Environmental Frontiers, 1(1), 16-20. CR - Ahmed, P. M., de Figueroa, L. I., & Pajot, H. F. (2020). Application of microbial consortia in degradation and detoxification of industrial pollutants. Microorganisms for sustainable environment and health, 401-418. https://doi.org/10.1016/B978-0-12-819001-2.00020-6 CR - Ali, M., Song, X., Ding, D., Wang, Q., Zhang, Z., & Tang, Z. (2022). Bioremediation of PAHs and heavy metals co-contaminated soils: challenges and enhancement strategies. Environmental Pollution, 295, 118686. https://doi.org/10.1016/j.envpol.2021.118686 CR - Alori, E. T., Gabasawa, A. I., Elenwo, C. E., & Agbeyegbe, O. O. (2022). Bioremediation techniques as affected by limiting factors in soil environment. Frontiers in Soil Science, 2, 937186. https://doi.org/10.3389/fsoil.2022.937186 CR - Amaro, H. M., Salgado, E. M., Nunes, O. C., Pires, J. C., & Esteves, A. F. (2023). Microalgae systems-environmental agents for wastewater treatment and further potential biomass valorisation. Journal of Environmental Management, 337, 117678. https://doi.org/10.1016/j.jenvman.2023.117678 CR - Ancona, V., Cavone, C., Grenni, P., Gagliardi, G., Cosentini, C., Borello, D., & Caracciolo, A. B. (2024). Plant microbial fuel cells for recovering contaminated environments. International Journal of Hydrogen Energy, 72, 1116-1126. https://doi.org/10.1016/j.ijhydene.2024.05.457 CR - Atli, G., & Sevgiler, Y. (2024). Binary effects of fluoxetine and zinc on the biomarker responses of the non-target model organism Daphnia magna. Environmental Science and Pollution Research, 31(19), 27988-28006. https://doi.org/10.1007/s11356-024-32846-5 CR - Aziz, Z. S., Jazaa, S. H., Dageem, H. N., Banoon, S. R., Balboul, B. A., & Abdelzaher, M. A. (2024). Bacterial biodegradation of oil-contaminated soil for pollutant abatement contributing to achieve sustainable development goals: A comprehensive review. Results in Engineering, https://doi.org/10.1016/j.rineng.2024.102083. CR - Brêda-Alves, F., de Oliveira Fernandes, V., & Chia, M. A. (2021). Understanding the environmental roles of herbicides on cyanobacteria, cyanotoxins, and cyanoHABs. Aquatic Ecology, 55(2), 347-361. https://doi.org/10.1007/s10452-021-09849-2 CR - Chia, X. K., Hadibarata, T., Kristanti, R. A., Jusoh, M. N. H., Tan, I. S., & Foo, H. C. Y. (2024). The function of microbial enzymes in breaking down soil contaminated with pesticides: a review. Bioprocess and biosystems engineering, 47(5), 597-620. https://doi.org/10.1007/s00449-024-02978-6 CR - Davidson, C. J., Hannigan, J. H., & Bowen, S. E. (2021). Effects of inhaled combined Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX): Toward an environmental exposure model. Environmental toxicology and pharmacology, 81, 103518. https://doi.org/10.1016/j.etap.2020.103518 CR - De Rosa, E., Montuori, P., Triassi, M., Masucci, A., & Nardone, A. (2022). Occurrence and distribution of persistent organic pollutants (POPs) from Sele River, Southern Italy: analysis of polychlorinated biphenyls and organochlorine pesticides in a water–sediment system. Toxics, 10(11), 662. https://doi.org/10.3390/toxics10110662 CR - Dinakarkumar, Y., Gnanasekaran, R., Reddy, G. K., Vasu, V., Balamurugan, P., & Murali, G. (2024). Fungal bioremediation: An overview of the mechanisms, applications and future perspectives. Environmental Chemistry and Ecotoxicology. https://doi.org/10.1016/j.enceco.2024.07.002. CR - Evalen, P. S., Barnhardt, E. N., Ryu, J., & Stahlschmidt, Z. R. (2024). Toxicity of glyphosate to animals: A meta-analytical approach. Environmental Pollution, 347, 123669. https://doi.org/10.1016/j.envpol.2024.123669 CR - Foroutan, B., Bashi Amlashi, H. R., Partani, A., De los Ríos, P., & Nasrollahzadeh Saravi, H. (2023). Determination and comparisons of heavy metals (Cobalt and Iron) accumulation in muscle, liver, and gill tissues of Golden Mullet (Chelon aurata) in coastal areas of the Caspian Sea (Mazandaran and Golestan provinces of Iran). International Journal of Aquatic Research and Environmental Studies, 3(1), 1-15. https://doi.org/10.70102/IJARES/V3I1/1 CR - Fouad, F. A., Youssef, D. G., Shahat, F. M., & Abd El-Ghany, M. N. (2022). Role of microorganisms in biodegradation of pollutants. In Handbook of biodegradable materials (pp. 1-40). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-83783-9_11-1 CR - Gladkov, E. A., & Gladkova, O. V. (2021). Plants and maximum permissible concentrations of heavy metals in soil. https://doi.org/10.7251/afts.2021.1325.077G CR - Gopi, N., Rekha, R., Vijayakumar, S., Liu, G., Monserrat, J. M., Faggio, C., ... & Vaseeharan, B. (2021). Interactive effects of freshwater acidification and selenium pollution on biochemical changes and neurotoxicity in Oreochromis mossambicus. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 250, 109161. https://doi.org/10.1016/j.cbpc.2021.109161 CR - Goswami, R. K., Agrawal, K., Shah, M. P., & Verma, P. (2022). Bioremediation of heavy metals from wastewater: a current perspective on microalgae‐based future. Letters in Applied Microbiology, 75(4), 701-717. https://doi.org/10.1111/lam.13564 CR - Grifoni, M., Franchi, E., Fusini, D., Vocciante, M., Barbafieri, M., Pedron, F., ... & Petruzzelli, G. (2022). Soil remediation: Towards a resilient and adaptive approach to deal with the ever-changing environmental challenges. Environments, 9(2), 18. https://doi.org/10.3390/environments9020018 CR - Haque, S. E., & Gazi-Khan, L. (2025). Limitations and challenges of bioremediation approach: alternative solutions. In Biotechnologies for Wastewater Treatment and Resource Recovery (pp. 147-157). Elsevier. https://doi.org/10.1016/B978-0-443-27376-6.00023-2. CR - Hussain, L. I., & Taimooz, S. H. (2024). Measuring the Levels of Heavy Metal Pollution in Al-Diwaniyah River Water Using Oomycetes Fungus. International Academic Journal of Science and Engineering, 11(1), 312-316. https://doi.org/10.9756/IAJSE/V11I1/IAJSE1136 CR - Khyade, V. B. (2018). Review on biodegradation of plastic through waxworm (Order: Lepidoptera; Family: Pyralidae). International Academic Journal of Economics, 5(4), 31-38. https://doi.org/10.9756/IAJE/V5I1/1810008 Koyama, H., Kamogashira, T., & Yamasoba, T. (2024). Heavy metal exposure: molecular pathways, clinical implications, and protective strategies. Antioxidants, 13(1), 76. https://doi.org/10.3390/antiox13010076 CR - Kumar, K., & Singh, D. (2024). Toxicity and bioremediation of the lead: a critical review. International Journal of Environmental Health Research, 34(4), 1879-1909. https://doi.org/10.1080/09603123.2023.2165047 CR - Kuppan, N., Padman, M., Mahadeva, M., Srinivasan, S., & Devarajan, R. (2024). A comprehensive review of sustainable bioremediation techniques: Eco friendly solutions for waste and pollution management. Waste Management Bulletin. https://doi.org/10.1016/j.wmb.2024.07.005 CR - Lau, C., & Hanson, M. L. (2023). Recovery of freshwater aquatic macrophytes after exposure to herbicides and the implications for ecological risk assessment. The ecotoxicology of aquatic macrophytes, 137-170. https://doi.org/10.1007/978-3-031-27833-4_6 CR - Lee, J. T., Bu, J., Senadheera, S., Tiong, Y. W., bin Abdul Majid, M., Yuan, X., ... & Tong, Y. W. (2024). Methanosarcina thermophila bioaugmentation with biochar growth support for valorisation of food waste via thermophilic anaerobic digestion. Journal of Environmental Management, 370, 122869. https://doi.org/10.1016/j.jenvman.2024.122869 CR - Malik, J. A. (Ed.). (2022). Microbes and microbial biotechnology for green remediation. Elsevier. Muter, O. (2023). Current trends in bioaugmentation tools for bioremediation: a critical review of advances and knowledge gaps. Microorganisms, 11(3), 710. https://doi.org/10.3390/microorganisms11030710 CR - Orhorhoro, E. K., Atuma, E. V., & Adeniyi, A. S. (2016). Design and fabrication of compression molding machine for plastic waste recycling in Nigeria. Int. Acad. Inst. Sci. Technol, 3(11), 1. CR - Osman, A. I., Hosny, M., Eltaweil, A. S., Omar, S., Elgarahy, A. M., Farghali, M., ... & Akinyede, K. A. (2023). Microplastic sources, formation, toxicity and remediation: a review. Environmental Chemistry Letters, 21(4), 2129-2169. https://doi.org/10.1007/s10311-023-01593-3 CR - Patel, A. B., Shaikh, S., Jain, K. R., Desai, C., & Madamwar, D. (2020). Polycyclic aromatic hydrocarbons: sources, toxicity, and remediation approaches. Frontiers in microbiology, 11, 562813. https://doi.org/10.3389/fmicb.2020.562813 CR - Pimenov, N. V., Nikolaev, Y. A., Dorofeev, A. G., Grachev, V. A., Kallistova, A. Y., Mironov, V. V., ... & Mardanov, A. V. (2022). Bioaugmentation of anammox activated sludge with a nitrifying bacterial community as a way to increase the nitrogen removal efficiency. Microbiology, 91(2), 133-142. https://doi.org/10.1134/S0026261722020102 CR - Postigo, C., Ginebreda, A., Barbieri, M. V., Barceló, D., Martín-Alonso, J., de la Cal, A., ... & de Alda, M. L. (2021). Investigative monitoring of pesticide and nitrogen pollution sources in a complex multi-stressed catchment: The lower Llobregat River basin case study (Barcelona, Spain). Science of the Total Environment, 755, 142377. https://doi.org/10.1016/j.scitotenv.2020.142377 CR - Raeisi, S. (2017). Subway expansion, the only way to treat air pollution in Tehran. International Academic Journal of Social Sciences, 4(1), 63–69. CR - Sharma, J., Goutam, J., Dhuriya, Y. K., & Sharma, D. (2021). Bioremediation of Industrial pollutants. Microbial Rejuvenation of Polluted Environment: Volume 2, 1-31. https://doi.org/10.1007/978-981-15-7455-9_1 CR - Sharma, P., Bano, A., Singh, S. P., Dubey, N. K., Chandra, R., & Iqbal, H. M. (2022). Recent advancements in microbial-assisted remediation strategies for toxic contaminants. Cleaner Chemical Engineering, 2, 100020. https://doi.org/10.1016/j.clce.2022.100020 CR - Tanvir, R. U., Zhang, J., Canter, T., Chen, D., Lu, J., & Hu, Z. (2021). Harnessing solar energy using phototrophic microorganisms: a sustainable pathway to bioenergy, biomaterials, and environmental solutions. Renewable and Sustainable Energy Reviews, 146, 111181. https://doi.org/10.1016/j.rser.2021.111181. CR - Usman, G., Mashood, A. A., Aliyu, A., Adamu, K. S., Salisu, A., Abdullahi, A. K., & Sheriff, H. K. (2023). Effects of environmental pollution on wildlife and human health and novel mitigation strategies. World Journal of Advanced Research and Reviews, 19(2), 1239-1251. CR - Vij, P., & Prashant, P. M. (2024). Analyzing Soil Pollution by Image Processing and Machine Learning at Contaminated Agricultural Field. Natural and Engineering Sciences, 9(2), 335-346. https://doi.org/10.28978/nesciences.1575484 CR - Wang, M., Bodirsky, B. L., Rijneveld, R., Beier, F., Bak, M. P., Batool, M., ... & Strokal, M. (2024). A triple increase in global river basins with water scarcity due to future pollution. Nature Communications, 15(1), 880. https://doi.org/10.1038/s41467-024-44947-3 UR - https://doi.org/10.28978/nesciences.1633049 L1 - https://dergipark.org.tr/en/download/article-file/4579055 ER -