TY - JOUR T1 - Optimal Control of an Infectious Disease Model in Case of Imperfect Testing TT - Kusurlu Test Durumunda Bulaşıcı Hastalık Modellerinin Optimal Kontrolü AU - Yılmaz, Fikriye AU - Akman, Tuğba AU - Esen, Rana PY - 2025 DA - June Y2 - 2025 DO - 10.33484/sinopfbd.1637257 JF - Sinop Üniversitesi Fen Bilimleri Dergisi JO - Sinop Uni J Nat Sci PB - Sinop University WT - DergiPark SN - 2536-4383 SP - 244 EP - 258 VL - 10 IS - 1 LA - en AB - In this work, we study the spread of a communicable disease using an SIR model that includes the effect of imperfect testing. The model is extended by adding birth and natural death rates, and it uses a standard incidence rate to describe disease dynamics over a long period, rather than just during an outbreak. We find the disease-free equilibrium and the basic reproduction number to analyze the system’s stability. To control transmission and testing rates, we set up an optimal control problem to find the best values. To do this, we simulate three different control problems: one with only isolation, one with only testing, and one with both. We see that reducing contact between susceptible and infected people is very important, along with having an effective testing strategy. KW - Mathematical modeling KW - optimal control problem KW - reproduction number KW - stability analysis KW - testing N2 - Bu çalışmada, bulaşıcı bir hastalığın yayılımını kusurlu testlerin etkisini içeren bir SIR modeli kullanarak inceliyoruz. Model, doğum ve doğal ölüm oranları eklenerek genişletilmiş ve sadece bir salgın dönemi içindeğil, uzun bir zaman aralığında hastalık dinamiklerini tanımlamak amacıyla standart bulaşma oranı kullanılmıştır. Hastalığın olmadığı denge noktasını ve temel üreme sayısını sistemin kararlılığını analiz etmek için buluyoruz. Bulaşma ve test oranlarını kontrol etmek için en uygun değerleri bulmaya yönelik bir optimal kontrol problemi kurduk. Bunu yapmak için üç farklı kontrol problemi simülasyonu yapıyoruz: yalnızca izolasyon uygulanan, yalnızca test oranının optimize edildiği ve her iki müdahalenin birlikte uygulandığı durumlar. Duyarlı ve enfekte bireyler arasındaki temasın azaltılmasının, etkili bir test stratejisiyle birlikte, oldukça önemli olduğunu gözlemledik. CR - Kermack, W., & Mckendrick, A. (1927). A contribution to mathematical theory of epidemics. The Royal Society, 115(772), 700–721. https://doi.org/10.1098/rspa.1927.0118 CR - Hethcote, H. W. (2000). The mathematics of infectious diseases. SIAM Review, 42(4), 599–653. https://doi.org/10.1137/S0036144500371907 CR - Torriani, F., & Taplitz, R. (2010). History of infection prevention and control. Infectious Diseases, 76-85. https://doi.org/10.1016/B978-0-323-04579-7.00006-X CR - Baker, R. E., Mahmud, A. S., Miller, I. F., Rajeev, M., Rasambainarivo, F., Rice, B. L., Takahashi, S., Tatem, A. J., Wagner, C. E., Wang, L.-F., Wesolowski, A. & Metcalf, C. J. E. (2022). Infectious disease in an era of global change. Nature Reviews Microbiology, 20(4), 193–205. https://doi.org/10.1038/s41579-021-00639-z CR - Gökçe, A., Gürbüz, B., & Rendall, A. D. (2024). Dynamics of a mathematical model of virus spreading incorporating the effect of a vaccine. Nonlinear Analysis: Real World Applications, 78, 104097. https://doi.org/10.1016/j.nonrwa.2024.104097 CR - Malik, T., & Sharomi, O. (2017). Optimal control in epidemiology. Annals of Operations Research, 227, 55–71. https://doi.org/10.1007/s10479-015-1834-4 CR - Berge, T., Ouemba Tassé, A., Tenkam, H., & Lubuma, J. (2018). Mathematical modeling of contact tracing as a control strategy of ebola virus disease. International Journal of Biomathematics, 11(07), Article 1850093. https://doi.org/10.1142/S1793524518500936 CR - Nyerere, N., Mpeshe, S. C., Ainea, N., Ayoade, A. A., & Mgandu, F. A. (2024). Global sensitivity analysis and optimal control of Typhoid fever transmission dynamics. Mathematical Modelling and Analysis, 29(1), 141–160. https://doi.org/10.3846/mma.2024.17859 CR - Teytsa, N. H. M., Tsanou, B., Bowong, S., & Lubuma, J. (2020). Coupling the modeling of phage-bacteria interaction and cholera epidemiological model with and without optimal control. Journal of Theoretical Biology, 512, Article 110537. https://doi.org/10.1016/j.jtbi.2020.110537 CR - Gao, D., & Huang, N. (2018). Optimal control analysis of a tuberculosis model. Applied Mathematical Modelling, 58, 47–64. https://doi.org/10.1016/j.apm.2017.12.027 CR - Zaman, G., Yong, H., & Jung, H. (2008). Stability and optimal vaccination of an SIR epidemic model. Biosystems, 93, 240–249. https://doi.org/10.1016/j.biosystems.2008.05.004 CR - Akman Yıldız, T., & Karaoğlu, E. (2019). Optimal control strategies for tuberculosis dynamics with exogenous reinfections in case of treatment at home and treatment in hospital. Nonlinear Dynamics, 97, 2643–2659. https://doi.org/10.1007/s11071-019-05153-9 CR - Omame, A., Nnanna, C., & Inyama, S. (2021). Optimal control and cost-effectiveness analysis of an HPV–chlamydia trachomatis co-infection model. Acta Biotheoretica, 69, 185–223. https://doi.org/10.1007/s10441-020-09401-z CR - Rabiu, M., Willie, R., & Parumasur, N. (2021). Optimal control strategies and sensitivity analysis of an HIV/AIDS-resistant model with behavior change. Acta biotheoretica, 69, 543–589. https://doi.org/10.1007/s10441-021-09421-3 CR - Akman Yıldız, T. (2019). A comparison of some control strategies for a non-integer order tuberculosis model. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 9(3), 21–30. https://doi.org/10.11121/ijocta.01.2019.00657 CR - Akman Yıldız, T. (2019). Optimal control problem of a non-integer order waterborne pathogen model in case of environmental stressors. Frontiers in Physics, 7, 1-10, Article 95. https://doi.org/10.3389/fphy.2019.00095 CR - Eikenberry, S. E., Mancuso, M., Iboi, E., Phan, T., Eikenberry, K., Kuang, Y., Kostelich, E., & Gumel, A. B. (2020). To mask or not to mask: Modeling the potential for face mask use by the general public to curtail the COVID-19 pandemic. Infectious Disease Modelling, 5, 293–308. https://doi.org/10.1016/j.idm.2020.04.001 CR - Lemos-Paiao, A. P., Silva, C. J., & Torres, D. F. (2020). A new compartmental epidemiological model for COVID-19 with a case study of Portugal. Ecological Complexity, 44, Article 100885. https://doi.org/10.1016/j.ecocom.2020.100885 CR - Akman, T., Köse, E., & Tuncer, N. (2025). Assessment of vaccination and underreporting on COVID-19 infections in Turkey based on effective reproduction number. International Journal of Biomathematics, 183, Article 2350102. https://doi.org/10.1142/S1793524523501024 CR - Chhetri, B., Bhagat, V. M., Vamsi, D., Ananth, V., Prakash, B., Muthusamy, S., Deshmukh, P., & Sanjeevi, C. B. (2022). Optimal drug regimen and combined drug therapy and its efficacy in the treatment of COVID-19: A within-host modeling study. Acta Biotheoretica, 70(2), Article 16. https://doi.org/10.1007/s10441-022-09440-8 CR - Villela, D. (2017). Imperfect testing of individuals for infectious diseases: Mathematical model and analysis. Communications in Nonlinear Science and Numerical Simulation, 46, 153–160. https://doi.org/10.1016/j.cnsns.2016.10.010 CR - Van Den Driessche, P., & Watmough, J. (2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Mathematical Biosciences, 180, 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 CR - Lenhart, S., & Workman, J. (2007). Optimal Control Applied to Biological Models. Chapman and Hall/CRC, New York. CR - Andersson, H., & Britton, T. (2012). Stochastic epidemic models and their statistical analysis. volume 151. Springer Science & Business Media, Springer New York, NY. CR - Silva, C. J., Torres, D. F. M., & Campos, C. (2020). Numerical optimal control of HIV transmission in octave/MATLAB. Mathematical and Computational Applications, 25, Article 1. https://doi.org/10.3390/mca25010001 UR - https://doi.org/10.33484/sinopfbd.1637257 L1 - https://dergipark.org.tr/en/download/article-file/4598052 ER -