TY - JOUR T1 - Kuple Düzgünleştirilmiş Boussinesq Denklemlerinin Yalnız Dalga Çözümlerinin Kararlılığı Üzerine Sayısal Bir Çalışma TT - A Numerical Study on the Stability of Solitary Wave Solutions of the Coupled Improved Boussinesq Equations AU - Pasinlioğlu, Şenay PY - 2025 DA - September Y2 - 2025 DO - 10.21597/jist.1640298 JF - Journal of the Institute of Science and Technology JO - J. Inst. Sci. and Tech. PB - Igdir University WT - DergiPark SN - 2536-4618 SP - 1089 EP - 1099 VL - 15 IS - 3 LA - tr AB - Bu çalışmada, kuple düzgünleştirilmiş Boussinesq denklemleri için yalnız (soliter) dalga çözümlerinin zaman evrimi ve küçük pertürbasyonlar altındaki kararlılık özellikleri sayısal olarak incelenmiştir. Yalnız dalgaların uzun zaman davranışlarını incelemek, doğrusal olmayan dalga dinamiklerini anlamak bakımından büyük önem taşımaktadır. Bu amaçla, uzay ayrıklaştırması için Fourier sözde (psödo)-spektral yöntemi ve zaman ayrıklaştırması için dördüncü mertebeden Runge-Kutta yöntemini birleştiren bir sayısal şema kullanılarak yalnız dalga çözümlerinin dinamikleri araştırılmıştır. Önerilen yöntemin hem zaman hem de uzaydaki doğruluğunu ve etkinliğini göstermek için çeşitli sayısal deneyler gerçekleştirilmiştir. Başlangıçta uygulanan küçük pertürbasyonlar ile dalgaların uzun zaman davranışları gözlemlenmiş ve kararlılıkları incelenmiştir. Elde edilen sonuçlar, kuple düzgünleştirilmiş Boussinesq denklemlerinin yalnız dalga çözümlerinin küçük pertürbasyonlar altında kararlı olduğunu göstermektedir. KW - Kuple düzgünleştirilmiş Boussinesq denklemleri KW - Zaman evrimi KW - Kararlılık N2 - In this study, the time evolution of solitary wave solutions to the coupled improved Boussinesq equations, and their stability properties under small perturbations are numerically investigated. Examining the long-term behavior of solitary waves is of great importance for understanding nonlinear wave dynamics. For this purpose, the dynamics of solitary wave solutions are examined using a numerical scheme that combines the Fourier pseudo-spectral method for spatial discritization and the fourth-order Runge–Kutta method for time discritization. Several numerical experiments are carried out to demonstrate the accuracy and efficiency of the proposed method in both time and space. The long-time behavior of the waves with initially applied small perturbations is observed, and their stability is examined. The obtained results indicate that the solitary wave solutions of the coupled improved Boussinesq equations are stable under small perturbations. CR - Bona, J., Durán, A., & Mitsotakis, D. (2023). Solitary-wave solutions of Benjamin–Ono and other systems for internal waves: II. Dynamics. Water Waves, 5, 161–190. doi:10.1007/s42286-023-00076-w CR - Chen, G., Guo, H., & Zhang, H. (2009). Global existence of solutions of Cauchy problem for generalized system of nonlinear evolution equations arising from DNA. Journal of Mathematical Physics, 50(8), 083514. doi:10.1063/1.3191683 CR - Chen, G., & Zhang, H. (2004). Initial boundary value problem for a system of generalized IMBq equations. Mathematical Methods in the Applied Sciences, 27(5), 497–518. doi:10.1002/mma.444 CR - Christiansen, P. L., Lomdahl, P. S., & Muto, V. (1991). On a Toda lattice model with a transversal degree of freedom. Nonlinearity, 4(2), 477–501. doi:10.1088/0951-7715/4/2/012 CR - De Godefroy, A. (1998). Blow up of solutions of a generalized Boussinesq equation. IMA Journal of Applied Mathematics (Institute of Mathematics & Its Applications), 60(2), 123–138. doi:10.1093/imamat/60.2.123 CR - Dougalis, V. A., Durán, A., López-Marcos, M. A., & Mitsotakis, D. E. (2007). A numerical study of the stability of solitary waves of the Bona–smith family of Boussinesq systems. Journal of Nonlinear Science, 17(6), 569–607. doi:10.1007/s00332-007-9004-8 CR - Dougalis, Vassilios A., Duran, A., & Saridaki, L. (2023). On the numerical approximation of Boussinesq/Boussinesq systems for internal waves. Numerical Methods for Partial Differential Equations, 39(5), 3677–3704. doi:10.1002/num.23021 CR - Gozukizil, O. F., & Akcagil, S. (2014). Travelling wave solutions for the coupled IBq equations by using the tanh-coth method. Journal of Applied Mathematics, 2014, 1–14. doi:10.1155/2014/486269 CR - Grimshaw, R. H. J., Khusnutdinova, K. R., & Moore, K. R. (2017). Radiating solitary waves in coupled Boussinesq equations. IMA Journal of Applied Mathematics (Institute of Mathematics & Its Applications), 82(4), 802–820. doi:10.1093/imamat/hxx014 CR - Guo, H., & Chen, G. (2013). A note on the Cauchy problem for coupled imbq equations. Acta Mathematica Scientia. Series B. English Edition, 33(2), 375–392. doi:10.1016/s0252-9602(13)60005-3 CR - Khusnutdinova, K. R., Samsonov, A. M., & Zakharov, A. S. (2009). Nonlinear layered lattice model and generalized solitary waves in imperfectly bonded structures. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 79(5 Pt 2), 056606. doi:10.1103/PhysRevE.79.056606 CR - Li, Y. A. (2002). Hamiltonian structure and linear stability of solitary waves of the Green-naghdi equations. Journal of Nonlinear Mathematical Physics, 9(Supplement 1), 99-105. doi:10.2991/jnmp.2002.9.s1.9 CR - Pasinlioğlu, Ş. (2024). Long-time behavior of solutions to the general class of coupled nonlocal nonlinear wave equations. Zeitschrift Fuer Angewandte Mathematik Und Physik, 75(6). doi:10.1007/s00033-024-02342-4 CR - Pego, R. L., Smereka, P., & Weinstein, M. I. (1995). Oscillatory instability of solitary waves in a continuum model of lattice vibrations. Nonlinearity, 8(6), 921–941. doi:10.1088/0951-7715/8/6/003 CR - Turitsyn, S. K. (1993). On a Toda lattice model with a transversal degree of freedom. Sufficient criterion of blow-up in the continuum limit. Physics Letters. A, 173(3), 267–269. doi:10.1016/0375-9601(93)90276-6 CR - Wang, S., & Li, M. (2009). The Cauchy problem for coupled IMBq equations. IMA Journal of Applied Mathematics (Institute of Mathematics & Its Applications), 74(5), 726–740. doi:10.1093/imamat/hxp024 CR - Wang, Y., & Tian, N. (2019). On the Cauchy problem for IMBq system arising from DNA. Acta Mathematica Scientia. Series B. English Edition, 39(4), 1136–1148. doi:10.1007/s10473-019-0416-y Wattis, J. A. D. (2001). Solitary waves in a diatomic lattice: analytic approximations for a wide range of speeds by quasi-continuum methods. Physics Letters. A, 284(1), 16–22. doi:10.1016/s0375-9601(01)00277-8 UR - https://doi.org/10.21597/jist.1640298 L1 - https://dergipark.org.tr/en/download/article-file/4611534 ER -